Experimental Analysis of a Laboratory-Scale Diesel Engine Exhaust Heat–Driven Absorption Refrigeration System as a Model for Naval Surface Ship Applications

Author(s):  
Cüneyt Ezgi ◽  
Sinem Bayrak
2020 ◽  
Vol 36 (02) ◽  
pp. 152-159 ◽  
Author(s):  
Cüneyt Ezgi ◽  
Sinem Bayrak

Decreasing industrial energy sources and major environmental problems caused by uncontrolled energy consumption have led to studies on alternative energy sources. This study presents a design and experimental analysis of an exhaust gas-driven absorption refrigeration system for the purpose of air conditioning by using the exhaust heat of a diesel engine, which is installed in the Naval Academy Mechanics Laboratory. The diesel engine is loaded with a dynamometer, and water and ammonia are used as an absorbent and refrigerant, respectively. At various diesel engine loads, cooling capacity and coefficient of performance (COP) of the absorption refrigeration system are calculated. Experimental results have indicated the cooling capacity as 1.098 kW at a maximum engine power of 4.9 HP. The highest COP value in the designed system has been calculated to be .3022 for the generator temperature of 160 C. Although the COP of refrigeration is low, the absorption refrigeration system can be provided a great cooling load from the exhaust heat of diesel engines and can be used in naval surface ships. In addition to energy efficiency of naval surface ships, infrared and acoustic signature can be minimized and a ships susceptibility can be dramatically reduced.


2018 ◽  
Vol 12 ◽  
pp. 797-804 ◽  
Author(s):  
Sorawit Kaewpradub ◽  
Prawit Sanguanduean ◽  
Wattanapong Katesuwan ◽  
Nares Chimres ◽  
Phatthi Punyasukhananda ◽  
...  

2013 ◽  
Vol 9 (4) ◽  
pp. 380-386 ◽  
Author(s):  
Ki-hong Kim ◽  
Kyung won Yang ◽  
Sangkwon Jeong ◽  
Kiil Nam ◽  
Daejun Chang

2019 ◽  
Vol 23 (1) ◽  
pp. 149-157
Author(s):  
Mukul Kumar ◽  
Randip Das

This work presents an experimental study of an ammonia-water absorption refrigeration system using the exhaust of an internal combustion engine as energy source. The exhaust gas energy availability, the performance of the absorption refrigeration system and the engine performance are evaluated. A commercial turbocharged Diesel engine has been tested in a bench test dynamometer, with the absorption refrigeration system adapted to the exhaust system. The maximum COP obtained from the refrigeration system is 0.136 and it has been shown that heat energy available with exhaust gas is capable of producing sufficient cooling capacity for air conditioning the vehicle without requiring any energy input from the engine.


Sign in / Sign up

Export Citation Format

Share Document