Determination of Human Error Probabilities for the Maintenance Operations of Marine Engines

2016 ◽  
Vol 32 (04) ◽  
pp. 226-234 ◽  
Author(s):  
Rabiul Islam ◽  
Rouzbeh Abbassi ◽  
Vikram Garaniya ◽  
Faisal I. Khan

Human error is a crucial factor in the shipping industry and not to mention numerous human errors occur during the maintenance procedures of marine engines. Determination of human error probabilities (HEPs) is important to reduce the human errors and prevent the accidents. Nevertheless, determination of HEPs in the maintenance procedures of marine engines has not been given desired attention. The aim of this study is to determine the HEPs for the maintenance procedures of the marine engines to minimize the human errors and preclude accidents from the shipping industry. The Success Likelihood Index Method is used to determine the HEPs due to the unavailability of human error data for maintenance procedures of marine engines. The results showed that among the 43 considered activities in this study, inspection and overhauls piston/piston rings have the lowest HEP meaning it has a lower consequence for accidents. On the other hand, fuel and lubricating oil filters pressure difference checking and renews filter elements activity have the highest HEP indicating it has high chances for accidents.

2016 ◽  
Vol 32 (4) ◽  
pp. 226-234 ◽  
Author(s):  
Rabiul Islam ◽  
Rouzbeh Abbassi ◽  
Vikram Garaniya ◽  
Faisal I. Khan

2011 ◽  
Vol 97-98 ◽  
pp. 825-830 ◽  
Author(s):  
Yong Tao Xi ◽  
Chong Guo

Safety is the eternal theme in shipping industry. Research shows that human error is the main reason of maritime accidents. Therefore, it is very necessary to research marine human errors, to discuss the contexts which caused human errors and how the contexts effect human behavior. Based on the detailed investigation of human errors in collision avoidance behavior which is the most key mission in navigation and the Performance Shaping Factors (PSFs), human reliability of mariners in collision avoidance was analyzed by using the integration of APJE and SLIM. Result shows that this combined method is effective and can be used for the research of maritime human reliability.


Author(s):  
M Jahangiri ◽  
N Hobobi ◽  
Sareh Keshavarzi ◽  
Ali Hosseini

Author(s):  
Caroline Morais ◽  
Raphael Moura ◽  
Michael Beer ◽  
Edoardo Patelli

Abstract Risk analyses require proper consideration and quantification of the interaction between humans, organization, and technology in high-hazard industries. Quantitative human reliability analysis approaches require the estimation of human error probabilities (HEPs), often obtained from human performance data on different tasks in specific contexts (also known as performance shaping factors (PSFs)). Data on human errors are often collected from simulated scenarios, near-misses report systems, and experts with operational knowledge. However, these techniques usually miss the realistic context where human errors occur. The present research proposes a realistic and innovative approach for estimating HEPs using data from major accident investigation reports. The approach is based on Bayesian Networks used to model the relationship between performance shaping factors and human errors. The proposed methodology allows minimizing the expert judgment of HEPs, by using a strategy that is able to accommodate the possibility of having no information to represent some conditional dependencies within some variables. Therefore, the approach increases the transparency about the uncertainties of the human error probability estimations. The approach also allows identifying the most influential performance shaping factors, supporting assessors to recommend improvements or extra controls in risk assessments. Formal verification and validation processes are also presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Renato A. Fonseca ◽  
Antonio Carlos M. Alvim ◽  
Paulo Fernando F. Frutuoso e Melo ◽  
Marco Antonio B. Alvarenga

This paper aims at performing a human reliability analysis using THERP (Technique for Human Error Prediction) and ATHEANA (Technique for Human Error Analysis) to develop a qualitative and quantitative analysis of the latent operator error in leaving EFW (emergency feed-water) valves closed in the TMI-2 accident. The accident analysis has revealed a series of unsafe actions that resulted in permanent loss of the unit. The integration between THERP and ATHEANA is developed in a way such as to allow a better understanding of the influence of operational context on human errors. This integration provides also, as a result, an intermediate method with the following features: (1) it allows the analysis of the action arising from the plant operational context upon the operator (as in ATHEANA), (2) it determines, as a consequence from the prior analysis, the aspects that most influence the context, and (3) it allows the change of these aspects into factors that adjust human error probabilities (as in THERP). This integration provides a more realistic and comprehensive modeling of accident sequences by considering preaccidental and postaccidental contexts, which, in turn, can contribute to more realistic PSA (Probabilistic Safety Assessment) evaluations and decision making.


2014 ◽  
Vol 92 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Alireza Noroozi ◽  
Faisal Khan ◽  
Scott MacKinnon ◽  
Paul Amyotte ◽  
Travis Deacon

2021 ◽  
Vol 11 (2) ◽  
pp. 749
Author(s):  
Yaniel Torres ◽  
Sylvie Nadeau ◽  
Kurt Landau

Manual assembly operations are sensitive to human errors that can diminish the quality of final products. The paper shows an application of human reliability analysis in a realistic manufacturing context to identify where and why manual assembly errors occur. The techniques SHERPA and HEART were used to perform the analysis of human reliability. Three critical tasks were selected for analysis based on quality records: (1) installation of three types of brackets using fasteners, (2) fixation of a data cable to the assembly structure using cushioned loop clamps and (3) installation of cap covers to protect inlets. The identified error modes with SHERPA were: 36 action errors, nine selection errors, eight information retrieval errors and six checking errors. According to HEART, the highest human error probabilities were associated with assembly parts sensitive to geometry-related errors (brackets and cushioned loop clamps). The study showed that perceptually engaging assembly instructions seem to offer the highest potential for error reduction and performance improvement. Other identified areas of action were the improvement of the inspection process and workers’ provision with better tracking and better feedback. Implementation of assembly guidance systems could potentially benefit worker’s performance and decrease assembly errors.


Author(s):  
Alan Hobbs ◽  
Ann Williamson

In recent years cognitive error models have provided insights into the unsafe acts that lead to many accidents in safety-critical environments. Most models of accident causation are based on the notion that human errors occur in the context of contributing factors. However, there is a lack of published information on possible links between specific errors and contributing factors. A total of 619 safety occurrences involving aircraft maintenance were reported using a self-completed questionnaire. Of these occurrences, 96% were related to the actions of maintenance personnel. The types of errors that were involved, and the contributing factors associated with those actions, were determined. Each type of error was associated with a particular set of contributing factors and with specific occurrence outcomes. Among the associations were links between memory lapses and fatigue and between rule violations and time pressure. Potential applications of this research include assisting with the design of accident prevention strategies, the estimation of human error probabilities, and the monitoring of organizational safety performance.


Sign in / Sign up

Export Citation Format

Share Document