The Calculation of Marine Propellers Based on Lifting-Surface Theory

1961 ◽  
Vol 5 (03) ◽  
pp. 1-14
Author(s):  
Pao C. Pien

Since the present theoretical propeller design method is based on the lifting-surface theory formulated by Ginzel and Ludwieg, an improvement to this lifting-surface theory is made first. Aside from the fact that the improved lifting-surface theory is more general with respect to blade outline and the loading distribution over the blade area, the most important improvement is in the method of obtaining the induced mean lines. In the new theory the induced mean line at any radius is derived from the down-wash distribution along the entire chord length rather than from the rate of change of the down wash at the middle chord as has been done by Ginzel and Ludwieg. The results obtained from the new method show that the induced mean line at any radius is not a function of the chordwise loading distribution at that radius alone but a function of the loading distribution over the entire blade area and the blade outline. Based on the improved theory a new theoretical propeller design method has been developed. The numerical work involved in this design method has been programmed into a high-speed computer for a special case of uniform chordwise loading distribution. Two design examples have been carried out in accordance with the new design procedure, one with skewed blade and the other with symmetrical blade. The experimental verification of the work presented here will be done in the near future.

1973 ◽  
Vol 17 (03) ◽  
pp. 129-139
Author(s):  
W. R. Jacobs ◽  
S. Tsakonas

An analysis based on the lifting surface theory has been developed for evaluation of the vibratory velocity field induced by the loading of an operating propeller in both uniform and nonuniform inflow fields. The analysis demonstrates that in the case of nonuniform flow the velocity at any field point is made up of a large number of combinations of the frequency constituents of the loading function with those of the space function (propagation or influence function). A numerical procedure has been developed adaptable to a high-speed digital computer (CDC 6600), and the existing program, which evaluates the steady and unsteady propeller loadings, the resulting hydrodynamic forces and moments, and the pressure field, has been extended to include evaluation of the velocity field as well. This program should thus become a highly versatile and useful tool for the ship researcher or designer.


Author(s):  
Kosuke Ashihara ◽  
Akira Goto ◽  
Shijie Guo ◽  
Hidenobu Okamoto

In this paper, a new aerodynamic design procedure is presented for a centrifugal compressor stage of a microturbine system. To optimize the three-dimensional (3-D) flows and the performance, an inverse design method, which numerically generates the 3-D blade geometry for specified blade loading distribution, has been applied together with the numerical validation using CFD (Computational Fluid Dynamics) and FEM (Finite Element Method). The blade profile along the shroud surface of the impeller was optimized based on the 3-D inverse design and CFD. However, the blade profile towards the hub surface was modified geometrically to achieve a nearly radial blade element especially at the inducer part of the impeller, in order to meet the required structural strength. The modified impeller successfully kept similar aerodynamic performance as that of a blade with a fully 3-D shape, whilst showing improved structural reliability. So, the proposed method to adopt the blade profile designed by the inverse method along the shroud, and to geometrically modify the blade profile towards the hub, was confirmed to be effective to design a high-speed compressor impeller. The vaned diffuser has also been re-designed using the inverse design method. The corner separation in the conventional wedge-type diffuser channel was suppressed in the new design. The stage performance improvements were confirmed by stage calculations using CFD.


1965 ◽  
Vol 9 (03) ◽  
pp. 79-101 ◽  
Author(s):  
S. Tsakonas ◽  
W. R. Jacobs

This study is third in a series of investigations applying the unsteady lifting-surface theory to the marine propeller case. In the present investigation, the surface integral equation is solved for a mathematical model where the chordwise loading is taken as the first term of Birnbaum's lift distribution (flat-plate chordwise distribution), in conjunction with Glauert's lift operator, which, in essence, satisfies the chordwise boundary conditions by a weighted average. It is shown that this model is an improvement over the modified Weissinger model used previously in this series, because it contains as a nucleus the exact two-dimensional solution, and thus it provides a sounder basis for determining the three-dimensional effects. The blade-loading is determined for a propeller operating in flow disturbances induced by the presence of a hull and by the blade-camber and incidence-angle effects. The stationary loading obtained by the present model is less than that obtained by the modified Weissinger model, whereas the nonstationary loading is slightly larger. The results of numerical calculations are applied to the problem of propeller vibratory thrust and torque, and comparison is made with previous theoretical and experimental values. Conclusions of the earlier studies as to the dependence of loading on the important parameters—blade-area ratio, aspect ratio and pitch—are confirmed by the present results.


1973 ◽  
Vol 17 (04) ◽  
pp. 196-207 ◽  
Author(s):  
S. Tsakonas ◽  
W. R. Jacobs ◽  
M. R. Ali

The mathematical model used in previous Davidson Laboratory adaptations of linearized unsteady lifting surface theory to marine propellers has been revised by removing the so-called "staircase" approximation of the blade wake and replacing it by an "exact" helicoidal blade wake. A new numerical procedure and program based on the present model have been developed to evaluate the steady and unsteady blade loading distributions, which are used to determine the bearing forces and moments. Systematic calculations of these forces and moments for a series of propellers show better agreement on the whole with experimental measurements than did the earlier calculations for the same series. In addition, the chordwise loading distributions are much smoother than obtained previously. However, the quantitative improvement must be weighed against the considerable increase in computer time over the old method.


1998 ◽  
Vol 120 (3) ◽  
pp. 556-562 ◽  
Author(s):  
Paul E. Griffin ◽  
Spyros A. Kinnas

This study uses a nonlinear optimization method coupled with a vortex lattice cavitating propeller analysis method to design efficient propeller blades. Different constraints are imposed to improve propeller design. Several advancements in the method are shown, including the option for quadratic skew, user specified skew distribution, and a constraint limiting the minimum pressure in wetted regions of the blade. Results for a series of fully wetted runs demonstrate the effectiveness of the constraint on minimum pressure in preventing the onset of bubble or mid-chord cavitation. A comparison of a design in uniform inflow with a design in non-axisymmetric inflow indicates that a propeller designed by the present method in non-axisymmetric inflow has more favorable cavitating flow characteristics than a propeller design assuming uniform inflow. Results are also shown for a series of runs utilizing the cavity constraints. These results indicate that the present method can be used to improve on propeller designs by imposing constraints on the cavity area and cavity volume velocity harmonics, as well as by using a quadratic skew distribution.


Sign in / Sign up

Export Citation Format

Share Document