Optimization of Microturbine Aerodynamics Using CFD, Inverse Design and FEM Structural Analysis: 1st Report — Compressor Design

Author(s):  
Kosuke Ashihara ◽  
Akira Goto ◽  
Shijie Guo ◽  
Hidenobu Okamoto

In this paper, a new aerodynamic design procedure is presented for a centrifugal compressor stage of a microturbine system. To optimize the three-dimensional (3-D) flows and the performance, an inverse design method, which numerically generates the 3-D blade geometry for specified blade loading distribution, has been applied together with the numerical validation using CFD (Computational Fluid Dynamics) and FEM (Finite Element Method). The blade profile along the shroud surface of the impeller was optimized based on the 3-D inverse design and CFD. However, the blade profile towards the hub surface was modified geometrically to achieve a nearly radial blade element especially at the inducer part of the impeller, in order to meet the required structural strength. The modified impeller successfully kept similar aerodynamic performance as that of a blade with a fully 3-D shape, whilst showing improved structural reliability. So, the proposed method to adopt the blade profile designed by the inverse method along the shroud, and to geometrically modify the blade profile towards the hub, was confirmed to be effective to design a high-speed compressor impeller. The vaned diffuser has also been re-designed using the inverse design method. The corner separation in the conventional wedge-type diffuser channel was suppressed in the new design. The stage performance improvements were confirmed by stage calculations using CFD.

Author(s):  
Hiroyoshi Watanabe ◽  
Hidenobu Okamoto ◽  
Shijie Guo ◽  
Akira Goto ◽  
Mehrdad Zangeneh

In this second report, a new aerodynamic design is presented for a radial turbine stage of a microturbine engine. To optimize three-dimensional (3-D) flows, an inverse design method, in which 3-D blade geometry is numerically obtained for specified blade loading distribution, has been applied together with numerical assessment using CFD (Computational Fluid Dynamics) and FEM (Finite Element Method). The runner blade profile along the hub surface was modified to attain nearly radially arranged blade elements especially at the exducer part of the radial turbine in order to achieve required structural strength. Also the blade thickness distribution was optimized to avoid vibration resonance and to meet creep strength requirements. The blade profile along the shroud surface was optimized via 3-D inverse design and CFD. CFD predicted aerodynamic performance of the modified turbine runner was confirmed to be similar to that of the fully 3-D blade shape, while maintaining structural reliability. The turbine nozzle also has been re-designed by using the inverse design method, with stage performance improvements confirmed by stage calculations using CFD.


Author(s):  
M Zangeneh ◽  
A Goto ◽  
H Harada

The application of a three-dimensional (3D) inverse design method in which the blade geometry is computed for a specified distribution of circulation to the design of turbomachinery blades is explored by using two examples. In the first instance the method is applied to the design of radial and mixed flow impellers to suppress secondary flows. Based on our understanding of the fluid dynamics of the flow in the impeller, simple guidelines are developed for input specification of the inverse method in order to systematically design impellers with suppressed secondary flows and a more uniform exit flow field. In the second example the method is applied to the design of a vaned diffuser. Again based on the understanding of the detailed flow field in the diffuser obtained by using 3D viscous calculations and oil flow visualizations, simple design guidelines are developed for input specification to the inverse method in order to suppress corner separation. In both cases the guidelines are verified numerically and in the case of the diffuser further experimental validation is presented.


Author(s):  
M. Zangeneh ◽  
W. R. Hawthrone

A fully three dimensional compressible inverse design method for the design of radial and mixed flow machines is described. In this method the distribution of the circumferentially averaged swirl velocity, or rV¯θ on the meridional geometry of the impeller is prescribed and the corresponding blade shape is computed iteratively. Two approaches are presented for solving the compressible flow problem. In the approximate approach, the pitchwise variation in density is neglected and as a result the algorithm is simple and efficient. In the exact approach, the velocities and density are computed throughout the three dimensional flow field by employing Fast Fourier Transform in the tangential direction. The results of the approximate and exact approach are compared for the case of a high speed (subsonic) radial-inflow turbine and it is shown that the difference between the blade shapes computed by the two methods is well within the manufacturing tolerances. The flow through the designed impeller is analysed by using three dimensional inviscid and viscous time marching programs and very good correlations between the specified and computed rV¯θ is obtained.


Author(s):  
Zhaowei Liu ◽  
Hu Wu

A recently developed aerodynamic inverse design method for axial compressor is presented in this paper. The inverse design method is based on solving the three-dimensional Reynolds-averaged Navier-Stokes equations. Blade surface static pressure distribution is prescribed before the design procedure. A new inverse design boundary condition is established based on the conservation of Riemann invariant on the blade surface. Blade profile is constantly modified by a virtual wall velocity which is obtained from the difference between the current and prescribed static pressure. The dynamic mesh theory is used to update the computation mesh where the shape of the blade is changing during the design process. The design procedure finishes after the prescribed static pressure distribution on the blade surface is satisfied. The method is first validated by a blade recovery test. It is then used to redesign the NASA Rotor 67.


Author(s):  
M. Zangeneh

This paper is concerned with the design of a high speed, 5 inch diameter radial-inflow turbine for medium-sized diesel engine turbocharger applications. The turbine was designed by a newly developed fully three dimensional compressible inverse design method, in which the blade shapes are computed for a specified distribution of rV¯θ. The designed blades had non-radial blade filaments and therefore the impeller was carefully analysed for its structural integrity. This was achieved by the iterative use of a three dimensional structural and vibration analysis program and the design method. The impeller was made by a casting process. The performance of the new impeller was measured and then compared with three other impellers, one conventional and two experimental. The new impeller performed substantially better than all the baseline turbines and showed a 5.5% improvement in the total-to-static efficiency over the conventional turbine, 2.5% of which was attributable to the aerodynamically superior blade shape computed by the three dimensional inverse design method. The improvement in efficiency was not just confined to the design point and an appreciable improvement could be observed at off-design conditions.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3210
Author(s):  
Wei Yang ◽  
Benqing Liu ◽  
Ruofu Xiao

Hydraulic machinery with high performance is of great significance for energy saving. Its design is a very challenging job for designers, and the inverse design method is a competitive way to do the job. The three-dimensional inverse design method and its applications to hydraulic machinery are herein reviewed. The flow is calculated based on potential flow theory, and the blade shape is calculated based on flow-tangency condition according to the calculated flow velocity. We also explain flow control theory by suppression of secondary flow and cavitation based on careful tailoring of the blade loading distribution and stacking condition in the inverse design of hydraulic machinery. Suggestions about the main challenge and future prospective of the inverse design method are given.


2019 ◽  
Vol 5 (10) ◽  
pp. eaax4769 ◽  
Author(s):  
Alan Zhan ◽  
Ricky Gibson ◽  
James Whitehead ◽  
Evan Smith ◽  
Joshua R. Hendrickson ◽  
...  

Controlling the propagation of optical fields in three dimensions using arrays of discrete dielectric scatterers is an active area of research. These arrays can create optical elements with functionalities unrealizable in conventional optics. Here, we present an inverse design method based on the inverse Mie scattering problem for producing three-dimensional optical field patterns. Using this method, we demonstrate a device that focuses 1.55-μm light into a depth-variant discrete helical pattern. The reported device is fabricated using two-photon lithography and has a footprint of 144 μm by 144 μm, the largest of any inverse-designed photonic structure to date. This inverse design method constitutes an important step toward designer free-space optics, where unique optical elements are produced for user-specified functionalities.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Luying Zhang ◽  
Gabriel Davila ◽  
Mehrdad Zangeneh

Abstract This paper presents three different multiobjective optimization strategies for a high specific speed centrifugal volute pump design. The objectives of the optimization consist of maximizing the efficiency and minimizing the cavitation while maintaining the Euler head. The first two optimization strategies use a three-dimensional (3D) inverse design method to parametrize the blade geometry. Both meridional shape and 3D blade geometry are changed during the optimization. In the first approach, design of experiment (DOE) method is used and the pump efficiency is obtained from computational fluid dynamics (CFD) simulations, while cavitation is evaluated by using minimum pressure on blade surface predicted by 3D inverse design method. The design matrix is then used to create a surrogate model where optimization is run to find the best tradeoff between cavitation and efficiency. This optimized geometry is manufactured and tested and is found to be 3.9% more efficient than the baseline with reduced cavitation at high flow. In the second approach, only the 3D inverse design method output is used to compute the efficiency and cavitation parameters and this leads to considerable reduction to the computational time. The resulting optimized geometry is found to be similar to the computationally more expensive solution based on 3D CFD results. In order to compare the inverse design based optimization to the conventional optimization, an equivalent optimization is carried out by parametrizing the blade angle and meridional shape.


Author(s):  
June Chung ◽  
Jeonghwan Shim ◽  
Ki D. Lee

A three-dimensional (3D) CFD-based design method for high-speed axial compressor blades is being developed based on the discrete adjoint method. An adjoint code is built corresponding to RVC3D, a 3D turbomachinery Navier-Stokes analysis code developed at NASA Glenn. A validation study with the Euler equations indicates that the adjoint sensitivities are sensitive to the choice of boundary conditions for the adjoint variables in internal flow problems and constraints may be needed on internal boundaries to capture proper physics of the adjoint system. The design method is demonstrated with inverse design based on Euler physics, and the results indicate that the adjoint design method produces efficient 3D designs by drastically reducing the computational cost.


Author(s):  
Yujie Zhu ◽  
Yaping Ju ◽  
Chuhua Zhang

Most of the inverse design methods of turbomachinery experience the shortcoming where the target aerodynamic parameters need to be manually specified depending on the designers’ experience and insight, making the design result aleatory and even deviated from the real optimal solution. To tackle this problem, an experience-independent inverse design optimization method is proposed and applied to the redesign of a compressor cascade airfoil in this study. The experience-independent inverse design optimization method can automatically obtain the target pressure distribution along the cascade airfoil through the genetic algorithm, rather than through the manual specification approach. The shape of cascade airfoil is then solved by the adjoint method. The effectiveness of the experience-independent inverse design optimization method is demonstrated by two inverse design cases of the compressor cascade airfoil, i.e. the inverse design of only the suction surface and the inverse design of both the suction and pressure surfaces. The results show that the proposed inverse design method is capable of significantly improving the aerodynamic performance of the compressor cascade. At the examined flow condition, a thin airfoil profile is beneficial to flow accelerations near the leading edge and flow separation avoidance near the trailing edge. The proposed inverse design method is quite generic and can be extended to the three-dimensional inverse design of advanced compressor blades.


Sign in / Sign up

Export Citation Format

Share Document