Memory Effects in Deepwater Maneuvering

1979 ◽  
Vol 23 (03) ◽  
pp. 175-187
Author(s):  
Carl A. Scragg

This paper discusses the error introduced into maneuvering predictions by the use of a set of linearized equations of motion which ignore memory effects. After incorporating certain improvements into the impulse-response technique for the determination of hydrodynamic coefficients, experiments were conducted to measure a complete set of the coefficients. Maneuvering predictions were then made using two different sets of linearized equations of motion, one of which included memory effects and one which excluded memory effects. It was determined that significant errors occurred only during the initial phase of the maneuver, and that memory effects could be safely ignored for most deepwater maneuvering problems.

1977 ◽  
Vol 14 (02) ◽  
pp. 265-275
Author(s):  
Carl A. Scragg

This paper presents a new method of experimentally determining the stability derivatives of a ship. Using a linearized set of the equations of motion which allows for the presence of a memory effect, the response of the ship to impulsive motions is examined. This new technique is compared with the traditional method of regular-motion tests and experimental results are presented for both methods.


Author(s):  
Amin Najafi ◽  
Mohammad Saeed Seif

Determination of high-speed crafts’ hydrodynamic coefficients will help to analyze the dynamics of these kinds of vessels and the factors affecting their dynamic stabilities. Also, it can be useful and effective in controlling the vessel instabilities. The main purpose of this study is to determine the coefficients of longitudinal motions of a planing catamaran with and without a hydrofoil using Reynolds-averaged Navier–Stokes method to evaluate the foil effects on them. Determination of hydrodynamic coefficients by experimental approach is costly and requires meticulous laboratory equipment; therefore, utilizing the numerical methods and developing a virtual laboratory seem highly efficient. In this study, the numerical results for hydrodynamic coefficients of a high-speed craft are verified against Troesch’s experimental results. In the following, after determination of hydrodynamic coefficients of a planing catamaran with and without foil, the foil effects on its hydrodynamic coefficients are evaluated. The results indicate that most of the coefficients are frequency-independent especially at high frequencies.


Author(s):  
G. W. Brindley ◽  
F. E. Hoare ◽  
Richard Whiddington

The data so far published on the diamagnetic susceptibilities of the alkaline halides, measured for the salts in the crystalline state, are very discordant and incomplete, as reference to Table I will show. The aim in carrying out these experiments has been twofold: firstly, to obtain a complete set of values for these salts and secondly to examine more closely than has hitherto been possible how rigorously the susceptibilities of simple crystalline salts are additive. It has already been established that the susceptibilities are approximately additive, but it has not been possible to test this with exactitude because of ( a ) the large discrepancies between the results obtained by previous observers, and ( b ) the lack of data for many crystals. The discrepancies may have arisen to some extent from the different experimental methods, some of which are more accurate than others and some of which may introduce errors peculiar to themselves. We have therefore made a complete re-determination of the susceptibilities of all the alkaline halides, using the same apparatus and method under the same conditions. Since any systematic experi-mental errors will affect all our results to approximately the same extent, we shall be in a stronger position for testing the additivity of the susceptibilities than if we rely partly on our own and partly on other observers’ results. Previous investigators have measured the susceptibilities of some compounds in the crystalline state and others in solution; the latter are of no help in connexion with our problem, for an examination of the available data suggests that solutions have susceptibilities higher by several per cent, than the corresponding crystals. We cannot, therefore, arrive at any certain conclusion by using results obtained partly for crystals and partly for solutions. 2—Method The method previously described has been used to obtain a complete set of values for the susceptibilities of the alkaline halides. Although slight modifications have been made from time to time, the apparatus has remained, in essentials, the same as when used for the measurement of the susceptibilities of the sodium and potassium halides.


1. The equations of motion of viscous fluid (obtained by grafting on certain terms to the abstract equations of the Eulerian form so as to adapt these equations to the case of fluids subject to stresses depending in some hypothetical manner on the rates of distortion, which equations Navier seems to have first introduced in 1822, and which were much studied by Cauchy and Poisson) were finally shown by St. Venant and Sir Gabriel Stokes, in 1845, to involve no other assumption than that the stresses, other than that of pressure uniform in all directions, are linear functions of the rates of distortion, with a co-efficient depending on the physical state of the fluid. By obtaining a singular solution of these equations as applied to the case of pendulums in steady periodic motion, Sir G. Stokes was able to compare the theoretical results with the numerous experiments that had been recorded, with the result that the theoretical calculations agreed so closely with the experimental determinations as seemingly to prove the truth of the assumption involved. This was also the result of comparing the flow of water through uniform tubes with the flow calculated from a singular solution of the equations so long as the tubes were small and the velocities slow. On the other hand, these results, both theoretical and practical, were directly at variance with common experience as to the resistance encountered by larger bodies moving with higher velocities through water, or by water moving with greater velocities through larger tubes. This discrepancy Sir G. Stokes considered as probably resulting from eddies which rendered the actual motion other than that to which the singular solution referred and not as disproving the assumption.


Joint Rail ◽  
2004 ◽  
Author(s):  
Mohammad Durali ◽  
Mohammad Mehdi Jalili Bahabadi

In this article a train model is developed for studying train derailment in passing through bends. The model is three dimensional, nonlinear, and considers 43 degrees of freedom for each wagon. All nonlinear characteristics of suspension elements as well as flexibilities of wagon body and bogie frame, and the effect of coupler forces are included in the model. The equations of motion for the train are solved numerically for different train conditions. A neural network was constructed as an element in solution loop for determination of wheel-rail contact geometry. Derailment factor was calculated for each case. The results are presented and show the major role of coupler forces on possible train derailment.


Author(s):  
Shanzhong Duan ◽  
Kurt S. Anderson

Abstract The paper presents a new hybrid parallelizable low order algorithm for modeling the dynamic behavior of multi-rigid-body chain systems. The method is based on cutting certain system interbody joints so that largely independent multibody subchain systems are formed. These subchains interact with one another through associated unknown constraint forces f¯c at the cut joints. The increased parallelism is obtainable through cutting the joints and the explicit determination of associated constraint loads combined with a sequential O(n) procedure. In other words, sequential O(n) procedures are performed to form and solve equations of motion within subchains and parallel strategies are used to form and solve constraint equations between subchains in parallel. The algorithm can easily accommodate the available number of processors while maintaining high efficiency. An O[(n+m)Np+m(1+γ)Np+mγlog2Np](0<γ<1) performance will be achieved with Np processors for a chain system with n degrees of freedom and m constraints due to cutting of interbody joints.


Author(s):  
В.Ю. Семенова ◽  
К.И. Баканов

В статье рассматривается определение коэффициентов демпфирования и присоединенных масс, возникающих при совместной качке двух судов в условиях мелководья параллельно вертикальной стенке на основании решения трехмерной потенциальной задачи. Определение гидродинамических коэффициентов осуществляется на основании методов интегральных уравнений и зеркальных отображений. Представленное решение в отечественной практике является новым. В статье приводятся результаты расчетов коэффициентов присоединенных масс и демпфирования, возникающих при качке двух одинаковых судов, расположенных лагом к волнению и параллельно вертикальной стенке в зависимости от изменения расстояний как между судами, так и между судами и вертикальной стенкой. Проводится исследование влияния различных фарватеров на величины гидродинамических коэффициентов, а именно: мелководного фарватера, мелководного фарватера с вертикальной стенкой, мелководного фарватера со вторым параллельно качающимся судном и мелководного фарватера с вертикальной стенкой и вторым судном. Таким образом, в работе учитывается одновременное влияния мелководья, вертикальной стенки и второго судна. Показано увеличение значений коэффициентов присоединенных масс и демпфирования при уменьшении расстояний между судами и между судами и вертикальной стенкой. Также показано значительное совместное влияние вертикальной стенки и второго судна на коэффициенты присоединенных масс и демпфирования по сравнению с другими видами стесненных фарватеров. The article discusses the determination of damping coefficients and added masses arising from the joint motions of two ships in shallow water conditions parallel to the vertical wall based on the solution of a three-dimensional potential problem. Determination of hydrodynamic coefficients is carried out on the basis of the methods of integral equations and mirror images. The solution presented in the national practice is new The article presents the results of calculating the coefficients of added masses and damping arising from the motions of two identical ships located lagged to the sea and parallel to the vertical wall, depending on the change in the distances between the ships and between the ships and the vertical wall. A study is being made of the influence of various waterways on the values ​​of hydrodynamic coefficients, namely: a shallow waterway, a shallow waterway with a vertical wall, a shallow waterway with a second parallel oscillating ship and a shallow waterway with a vertical wall and a second ship. Thus, the work takes into account the simultaneous influence of shallow water, vertical wall and the second ship. An increase in the values of the coefficients of added masses and damping with a decrease in the distances between ships and between ships and the vertical wall is shown. It also shows a significant combined effect of the vertical wall and the second ship on the added mass and damping coefficients in comparison with other types of constrained waterways.


Author(s):  
Keith W. Buffinton

Abstract Presented in this work are the equations of motion governing the behavior of a simple, highly flexible, prismatic-jointed robotic manipulator performing repetitive maneuvers. The robot is modeled as a uniform cantilever beam that is subject to harmonic axial motions over a single bilateral support. To conveniently and accurately predict motions that lead to unstable behavior, three methods are investigated for determining the boundaries of unstable regions in the parameter space defined by the amplitude and frequency of axial motion. The first method is based on a straightforward application of Floquet theory; the second makes use of the results of a perturbation analysis; and the third employs Bolotin’s infinite determinate method. Results indicate that both perturbation techniques and Bolotin’s method yield acceptably accurate results for only very small amplitudes of axial motion and that a direct application of Floquet theory, while computational expensive, is the most reliable way to ensure that all instability boundaries are correctly represented. These results are particularly relevant to the study of prismatic-jointed robotic devices that experience amplitudes of periodic motion that are a significant percentage of the length of the axially moving member.


Sign in / Sign up

Export Citation Format

Share Document