A Study of Hydrodynamic Characteristics of Boundary Layer With Algae Roughness

2004 ◽  
Vol 41 (02) ◽  
pp. 60-66
Author(s):  
Chelakara S. Subramanian ◽  
Nagahiko Shinjo ◽  
Sathya N. Gangadharan

Filamentous algae fouling, such as Enteromorpha clathrata, is a soft and hairylike roughness that sometimes grows even thicker than a normal boundary layer. Typically, such fouling has been treated as traditional roughness functions to yield hydrodynamic characteristics. This technique has been successfully used for a thin fouling layer. However, it may not be applicable on a thicker layer, as the present study found substantial fluid flow within the layer. For such cases, the roughness cannot be treated simply as a passive geometric variable, but its kinematics and interactions with the flow must be considered. The inner law (log law) dynamics may be abnormal to yield any meaningful roughness function if it is calculated in the traditional way as the departure of a rough-wall log law profile over a smooth-wall log law profile. In the present research, velocity measurement of the E. clathrata roughness boundary layer using pitot-static tube and laser Doppler velocimeter (LDV) were compared. Large discrepancies in the velocity profiles within and in the vicinity of the roughness layer were observed between the two methods. The pitot-static tube data showed significantly high velocities (60% to 80% of the free stream) in the inner layer as compared to a smooth wall boundary layer. This local increase in velocity is believed to be the result of elastic transfer of free-stream energy to the near-wall motions by the E. clathrata filaments. Consequently, the usual assumption of the normal pressure gradient as a negligible second-order term for a normal zero-pressure gradient boundary layer may not be valid for the present kind of roughness. The LDV velocity measurements near and within the roughness layer have large uncertainties due to interference of the probe volume by the E. clathrata filaments. Above the roughness, the pitot-static tube and LDV profiles show relatively good agreement. It is concluded that for accurate prediction of the wall shear stress with E. clathrata-type of bio-fouling roughness, the Clauser velocity loss function should include a form drag factor instead of only the viscous drag factor.

Author(s):  
Chekakara S. Subramanian ◽  
Nagahiko Shinjo ◽  
Sathya N. Gangadharan

Filamentous algae fouling such as Enteromorpha clathrata is a soft and hairy-like substance that can protrude even through a normal boundary layer. Typically, such fouling has been treated as traditional roughness functions to yield hydrodynamic characteristics [1]. This technique has been successfully used for thin fouling layer. However it may not be applicable on thicker layer since present study found substantial fluid flow within the layer. For such cases, the roughness cannot be treated simply as a passive geometric variable, but its kinematics and interactions with the flow have to be considered. The inner law (log law) dynamics may be abnormal to yield any meaningful roughness function if it is calculated in the traditional way as the departure of rough-wall log law profile over a smooth-wall log law profile. Moreover, measurement of velocity profile using LDV within the roughness is ambiguous because of the beam interference. In the present research velocity measurement of the Enteromorpha roughness boundary layer using pitot-static tube and laser Doppler velocimeter (LDV) were compared. Large discrepancies in the velocity profiles within and in the vicinity of the roughness layer were observed between the two methods. The pitot-static tube data showed significantly high velocities (60%–80% of the freestream) in the inner layer. On the other hand, LDV velocity measurements near and within the roughness layer was not reliable due to obstruction of the probe volume by the Enteromorpha filaments. The lack of good near wall data points led to inconsistencies in estimating the fluid dynamic characteristics such as skin friction coefficient and wall shear stress. Above the roughness, the pitot-static tube and LDV profiles showed relatively good agreement.


1977 ◽  
Vol 82 (3) ◽  
pp. 507-528 ◽  
Author(s):  
Hugh W. Coleman ◽  
Robert J. Moffat ◽  
William M. Kays

The behaviour of a fully rough turbulent boundary layer subjected to favourable pressure gradients both with and without blowing was investigated experimentally using a porous test surface composed of densely packed spheres of uniform size. Measurements of profiles of mean velocity and the components of the Reynolds-stress tensor are reported for both unblown and blown layers. Skin-friction coefficients were determined from measurements of the Reynolds shear stress and mean velocity.An appropriate acceleration parameterKrfor fully rough layers is defined which is dependent on a characteristic roughness dimension but independent of molecular viscosity. For a constant blowing fractionFgreater than or equal to zero, the fully rough turbulent boundary layer reaches an equilibrium state whenKris held constant. Profiles of the mean velocity and the components of the Reynolds-stress tensor are then similar in the flow direction and the skin-friction coefficient, momentum thickness, boundary-layer shape factor and the Clauser shape factor and pressure-gradient parameter all become constant.Acceleration of a fully rough layer decreases the normalized turbulent kinetic energy and makes the turbulence field much less isotropic in the inner region (forFequal to zero) compared with zero-pressure-gradient fully rough layers. The values of the Reynolds-shear-stress correlation coefficients, however, are unaffected by acceleration or blowing and are identical with values previously reported for smooth-wall and zero-pressure-gradient rough-wall flows. Increasing values of the roughness Reynolds number with acceleration indicate that the fully rough layer does not tend towards the transitionally rough or smooth-wall state when accelerated.


1987 ◽  
Author(s):  
Clifford J. Obara ◽  
C. P. van Dam

In this paper, foil and planform parameters which govern the level of viscous drag produced by the keel of a sailing yacht are discussed. It is shown that the application of laminar boundary-Layer flow offers great potential for increased boat speed resulting from the reduction in viscous drag. Three foil shapes have been designed and it is shown that their hydro­dynamic characteristics are very much dependent on location and mode of boundary-Layer transition. The planform parameter which strongly affects the capabilities of the keel to achieve laminar flow is lea ding-edge sweep angle. The two significant phenomena related to keel sweep angle which can cause premature transition of the laminar boundary layer are crossflow instability and turbulent contamination of the leading-edge attachment line. These flow phenomena and methods to control them are discussed in detail. The remaining factors that affect the maintainability of laminar flow include surface roughness, surface waviness, and freestream turbulence. Recommended limits for these factors are given to insure achievability of laminar flow on the keel. In addition, the application of a simple trailing-edge flap to improve the hydrodynamic characteristics of a foil at moderate-to-high leeway angles is studied.


Author(s):  
Jeffrey P. Bons ◽  
Stephen T. McClain

Experimental measurements of heat transfer (St) are reported for low speed flow over scaled turbine roughness models at three different freestream pressure gradients: adverse, zero (nominally), and favorable. The roughness models were scaled from surface measurements taken on actual, in-service land-based turbine hardware and include samples of fuel deposits, TBC spallation, erosion, and pitting as well as a smooth control surface. All St measurements were made in a developing turbulent boundary layer at the same value of Reynolds number (Rex≅900,000). An integral boundary layer method used to estimate cf for the smooth wall cases allowed the calculation of the Reynolds analogy (2St/cf). Results indicate that for a smooth wall, Reynolds analogy varies appreciably with pressure gradient. Smooth surface heat transfer is considerably less sensitive to pressure gradients than skin friction. For the rough surfaces with adverse pressure gradient, St is less sensitive to roughness than with zero or favorable pressure gradient. Roughness-induced Stanton number increases at zero pressure gradient range from 16–44% (depending on roughness type), while increases with adverse pressure gradient are 7% less on average for the same roughness type. Hot-wire measurements show a corresponding drop in roughness-induced momentum deficit and streamwise turbulent kinetic energy generation in the adverse pressure gradient boundary layer compared with the other pressure gradient conditions. The combined effects of roughness and pressure gradient are different than their individual effects added together. Specifically, for adverse pressure gradient the combined effect on heat transfer is 9% less than that estimated by adding their separate effects. For favorable pressure gradient, the additive estimate is 6% lower than the result with combined effects. Identical measurements on a “simulated” roughness surface composed of cones in an ordered array show a behavior unlike that of the scaled “real” roughness models. St calculations made using a discrete-element roughness model show promising agreement with the experimental data. Predictions and data combine to underline the importance of accounting for pressure gradient and surface roughness effects simultaneously rather than independently for accurate performance calculations in turbines.


2001 ◽  
Vol 446 ◽  
pp. 271-308 ◽  
Author(s):  
M. KALTER ◽  
H. H. FERNHOLZ

This paper is an extension of an experimental investigation by Alving & Fernholz (1996). In the present experiments the effects of free-stream turbulence were investigated on a boundary layer with an adverse pressure gradient and a closed reverse-flow region. By adding free-stream turbulence the mean reverse-flow region was shortened or completely eliminated and this was used to control the size of the separation bubble. The turbulence intensity was varied between 0.2% and 6% using upstream grids while the turbulence length scale was on the order of the boundary layer thickness. Mean and fluctuating velocities as well as spectra were measured by means of hot-wire and laser-Doppler anemometry and wall shear stress by wall pulsed-wire and wall hot-wire probes.Free-stream turbulence had a small effect on the boundary layer in the mild adverse-pressure-gradient region but in the vicinity of separation and along the reverse-flow region mean velocity profiles, skin friction and turbulence structure were strongly affected. Downstream of the mean or instantaneous reverse-flow regions highly disturbed boundary layers developed in a nominally zero pressure gradient and converged to a similar turbulence structure in all three cases at the end of the test section. This state was, however, still very different from that in a canonical boundary layer.


Sign in / Sign up

Export Citation Format

Share Document