A Survey on Machine Learning Algorithms and finding the best out there for the considered seven Medical Data Sets Scenario

2019 ◽  
Vol 12 (6) ◽  
pp. 3059
Author(s):  
R. M. Balajee ◽  
K. Venkatesh
2021 ◽  
Author(s):  
Jack Woollam ◽  
Jannes Münchmeyer ◽  
Carlo Giunchi ◽  
Dario Jozinovic ◽  
Tobias Diehl ◽  
...  

<p>Machine learning methods have seen widespread adoption within the seismological community in recent years due to their ability to effectively process large amounts of data, while equalling or surpassing the performance of human analysts or classic algorithms. In the wider machine learning world, for example in imaging applications, the open availability of extensive high-quality datasets for training, validation, and the benchmarking of competing algorithms is seen as a vital ingredient to the rapid progress observed throughout the last decade. Within seismology, vast catalogues of labelled data are readily available, but collecting the waveform data for millions of records and assessing the quality of training examples is a time-consuming, tedious process. The natural variability in source processes and seismic wave propagation also presents a critical problem during training. The performance of models trained on different regions, distance and magnitude ranges are not easily comparable. The inability to easily compare and contrast state-of-the-art machine learning-based detection techniques on varying seismic data sets is currently a barrier to further progress within this emerging field. We present SeisBench, an extensible open-source framework for training, benchmarking, and applying machine learning algorithms. SeisBench provides access to various benchmark data sets and models from literature, along with pre-trained model weights, through a unified API. Built to be extensible, and modular, SeisBench allows for the simple addition of new models and data sets, which can be easily interchanged with existing pre-trained models and benchmark data. Standardising the access of varying quality data, and metadata simplifies comparison workflows, enabling the development of more robust machine learning algorithms. We initially focus on phase detection, identification and picking, but the framework is designed to be extended for other purposes, for example direct estimation of event parameters. Users will be able to contribute their own benchmarks and (trained) models. In the future, it will thus be much easier to compare both the performance of new algorithms against published machine learning models/architectures and to check the performance of established algorithms against new data sets. We hope that the ease of validation and inter-model comparison enabled by SeisBench will serve as a catalyst for the development of the next generation of machine learning techniques within the seismological community. The SeisBench source code will be published with an open license and explicitly encourages community involvement.</p>


Author(s):  
Sergey Pronin ◽  
Mykhailo Miroshnichenko

A system for analyzing large data sets using machine learning algorithms


Author(s):  
Balasree K ◽  
Dharmarajan K

In rapid development of Big Data technology over the recent years, this paper discussing about the Machine Learning (ML) playing role that is based on methods and algorithms to Big Data Processing and Big Data Analytics. In evolutionary fields and computing fields of developments that both are complementing each other. Big Data: The rapid growth of such data solutions needed to be studied and provided to handle then to gain the knowledge from datasets and extracting values due to the data sets are very high in velocity and variety. The Big data analytics are involving and indicating the appropriate data storage and computational outline that enhanced by using Scalable Machine Learning Algorithms and Big Data Analytics then the analytics to reveal the massive amounts of hidden data’s and secret correlations. This type of Analytic information useful for organizations and companies to gain deeper knowledge, development and getting advantages over the competition. When using this Analytics we can predict the accurate implementation over the data. This paper presented about the detailed review of state-of-the-art developments and overview of advantages and challenges in Machine Learning Algorithms over big data analytics.


2018 ◽  
Vol 7 (2.19) ◽  
pp. 31
Author(s):  
K Chokkanathan ◽  
S Koteeswaran

Machine learning algorithms are used immensely for performing most important computational tasks with the help of sample data sets.  Most of the cases Machine learning algorithms will provide best solution where the programming languages failed to produce viable and economically cost-effective results.  Huge volume of deterministic problems are addressed and tackled by using the available sample data sets.  Because of this now a days machine learning concepts are extensively used in computer science and many other fields.  But still we need to explore more to implement machine learning in a specific field such as network analysis, stock trading, spam filters, traffic analysis, real-time and non-real time traffic etc., which may not be available in text books.  Here I would like to discourse some of the key points that the machine learning researchers and practitioners can make use of them.  These include shortcomings and concerns also.  


Author(s):  
Lakshmi Prayaga ◽  
Krishna Devulapalli ◽  
Chandra Prayaga

Wearable devices are contributing heavily towards the proliferation of data and creating a rich minefield for data analytics. Recent trends in the design of wearable devices include several embedded sensors which also provide useful data for many applications. This research presents results obtained from studying human-activity related data, collected from wearable devices. The activities considered for this study were working at the computer, standing and walking, standing, walking, walking up and down the stairs, and talking while walking. The research entails the use of a portion of the data to train machine learning algorithms and build a model. The rest of the data is used as test data for predicting the activity of an individual. Details of data collection, processing, and presentation are also discussed. After studying the literature and the data sets, a Random Forest machine learning algorithm was determined to be best applicable algorithm for analyzing data from wearable devices. The software used in this research includes the R statistical package and the SensorLog app.


Author(s):  
Prof. Prema Sahane

In this paper we are introducing a sign language converter which works as a duplex system as it can convert text to sign language as well as it can do a real time video to text conversion. It is basically a system that can be used by all people who know sign language as well as who are not familiar with it. The main aim of this system is to involve the specially abled people as much as possible to interact with others. Our system uses the basic NLP i.e. the Natural language Processing and algorithms like CNN classifier to make the implementation of this translator. Along with that this system focuses on the Indian Sign Language so that it can be used by our country people. The finger gestures are captured by the camera and using various machine learning algorithms the system will automatically translate the signs to the readable text, similarly in sign to text conversion, based on the data sets and various Machine learning algorithms the text will be converted to sign language.


Author(s):  
Sotiris Kotsiantis ◽  
Dimitris Kanellopoulos ◽  
Panayotis Pintelas

In classification learning, the learning scheme is presented with a set of classified examples from which it is expected tone can learn a way of classifying unseen examples (see Table 1). Formally, the problem can be stated as follows: Given training data {(x1, y1)…(xn, yn)}, produce a classifier h: X- >Y that maps an object x ? X to its classification label y ? Y. A large number of classification techniques have been developed based on artificial intelligence (logic-based techniques, perception-based techniques) and statistics (Bayesian networks, instance-based techniques). No single learning algorithm can uniformly outperform other algorithms over all data sets. The concept of combining classifiers is proposed as a new direction for the improvement of the performance of individual machine learning algorithms. Numerous methods have been suggested for the creation of ensembles of classi- fiers (Dietterich, 2000). Although, or perhaps because, many methods of ensemble creation have been proposed, there is as yet no clear picture of which method is best.


2020 ◽  
Vol 11 (4) ◽  
pp. 1-22
Author(s):  
Adriaan Jacobus Prins ◽  
Adriaan van Niekerk

This study evaluates the use of LiDAR data and machine learning algorithms for mapping vineyards. Vineyards are planted in rows spaced at various distances, which can cause spectral mixing within individual pixels and complicate image classification. Four resolution where used for generating normalized digital surface model and intensity derivatives from the LiDAR data. In addition, texture measures with window sizes of 3x3 and 5x5 were generated from the LiDAR derivatives. The different combinations of the resolutions and window sizes resulted in eight data sets that were used as input to 11 machine learning algorithms. A larger window size was found to improve the overall accuracy for all the classifier–resolution combinations. The results showed that random forest with texture measures generated at a 5x5 window size outperformed the other experiments, regardless of the resolution used. The authors conclude that the random forest algorithm used on LiDAR derivatives with a resolution of 1.5m and a window size of 5x5 is the recommend configuration for vineyard mapping using LiDAR data.


Sign in / Sign up

Export Citation Format

Share Document