Comparison of Bacterial Prevalence in Saliva of Edentulous Patients with or without Complete Dentures by 16S rRNA Gene Based Metagenomic Analysis Identifies a Novel Bacterial Signature in Denture Patients

Author(s):  
V Sreedevi ◽  
M. S. Kanan ◽  
Aravind Ramanathan
Diversity ◽  
2017 ◽  
Vol 9 (3) ◽  
pp. 31 ◽  
Author(s):  
Cássia Oliveira ◽  
Lauren Gunderman ◽  
Cathryn Coles ◽  
Jason Lochmann ◽  
Megan Parks ◽  
...  

2020 ◽  
Vol 58 (2) ◽  
pp. 615-623
Author(s):  
Monika Mioduchowska ◽  
Katarzyna Zając ◽  
Krzysztof Bartoszek ◽  
Piotr Madanecki ◽  
Jarosław Kur ◽  
...  

2020 ◽  
Vol 233 ◽  
pp. 126408 ◽  
Author(s):  
Ramu Meenatchi ◽  
Thangadurai Thinesh ◽  
Pownraj Brindangnanam ◽  
Saqib Hassan ◽  
George Seghal Kiran ◽  
...  

2013 ◽  
Vol 162 (2-4) ◽  
pp. 891-898 ◽  
Author(s):  
Amy Sturgeon ◽  
Jason W. Stull ◽  
Marcio C. Costa ◽  
J. Scott Weese

2016 ◽  
Vol 48 (2) ◽  
pp. e208-e208 ◽  
Author(s):  
Jae Young Yoo ◽  
Mina Rho ◽  
Young-Ah You ◽  
Eun Jin Kwon ◽  
Min-Hye Kim ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Bruna Matturro ◽  
Marco Zepilli ◽  
Agnese Lai ◽  
Mauro Majone ◽  
Simona Rossetti

Bioelectrochemical systems (BES) are attractive and versatile options for the bioremediation of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found as co-contaminants in the environment. The elucidation of the microbial players’ role in the bioelectroremediation processes for treating multicontaminated groundwater is still a research need that attracts scientific interest. In this study, 16S rRNA gene amplicon sequencing and whole shotgun metagenomics revealed the leading microbial players and the primary metabolic interactions occurring in the biofilm growing at the biocathode where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) reduction occurred. The presence of Cr(VI) did not negatively affect the TCE degradation, as evidenced by the RD rates estimated during the reactor operation with TCE (111±2 μeq/Ld) and TCE/Cr(VI) (146±2 μeq/Ld). Accordingly, Dehalococcoides mccartyi, the primary biomarker of the RD process, was found on the biocathode treating both TCE (7.82E+04±2.9E+04 16S rRNA gene copies g−1 graphite) and TCE/Cr(VI) (3.2E+07±2.37E+0716S rRNA gene copies g−1 graphite) contamination. The metagenomic analysis revealed a selected microbial consortium on the TCE/Cr(VI) biocathode. D. mccartyi was the sole dechlorinating microbe with H2 uptake as the only electron supply mechanism, suggesting that electroactivity is not a property of this microorganism. Methanobrevibacter arboriphilus and Methanobacterium formicicum also colonized the biocathode as H2 consumers for the CH4 production and cofactor suppliers for D. mccartyi cobalamin biosynthesis. Interestingly, M. formicicum also harbors gene complexes involved in the Cr(VI) reduction through extracellular and intracellular mechanisms.


2015 ◽  
Vol 41 (1) ◽  
pp. 51-58
Author(s):  
Mohammad Shamimul Alam ◽  
Hawa Jahan ◽  
Rowshan Ara Begum ◽  
Reza M Shahjahan

Heteropneustesfossilis, Clariasbatrachus and C. gariepinus are three major catfishes ofecological and economic importance. Identification of these fish species becomes aproblem when the usual external morphological features of the fish are lost or removed,such as in canned fish. Also, newly hatched fish larva is often difficult to identify. PCRsequencingprovides accurate alternative means of identification of individuals at specieslevel. So, 16S rRNA genes of three locally collected catfishes were sequenced after PCRamplification and compared with the same gene sequences available from othergeographical regions. Multiple sequence alignment of the 16S rRNA gene fragments ofthe catfish species has revealed polymorphic sites which can be used to differentiate thesethree species from one another and will provide valuable insight in choosing appropriaterestriction enzymes for PCR-RFLP based identification in future. Asiat. Soc. Bangladesh, Sci. 41(1): 51-58, June 2015


2020 ◽  
Vol 139 ◽  
pp. 161-174
Author(s):  
R Palmer ◽  
GTA Fleming ◽  
S Glaeser ◽  
T Semmler ◽  
A Flamm ◽  
...  

During 1992 and 1993, a bacterial disease occurred in a seawater Atlantic salmon Salmo salar farm, causing serious mortalities. The causative agent was subsequently named as Oceanivirga salmonicida, a member of the Leptotrichiaceae. Searches of 16S rRNA gene sequence databases have shown sequence similarities between O. salmonicida and uncultured bacterial clones from the digestive tracts of marine mammals. In the current study, oral samples were taken from stranded dolphins (common dolphin Delphinus delphis, striped dolphin Stenella coeruleoalba) and healthy harbour seals Phoca vitulina. A bacterium with growth characteristics consistent with O. salmonicida was isolated from a common dolphin. The isolate was confirmed as O. salmonicida, by comparisons to the type strain, using 16S rRNA gene, gyrB, groEL, and recA sequence analyses, average nucleotide identity analysis, and MALDI-TOF mass spectrometry. Metagenomic analysis indicated that the genus Oceanivirga represented a significant component of the oral bacterial microbiomes of the dolphins and seals. However, sequences consistent with O. salmonicida were only found in the dolphin samples. Analyses of marine mammal microbiome studies in the NCBI databases showed sequences consistent with O. salmonicida from the common dolphin, striped dolphin, bottlenose dolphin Tursiops truncatus, humpback whale Megaptera novaeangliae, and harbour seal. Sequences from marine environmental studies in the NCBI databases showed no sequences consistent with O. salmonicida. The findings suggest that several species of marine mammals are natural hosts of O. salmonicida.


Sign in / Sign up

Export Citation Format

Share Document