Classification of faults in a hybrid transmission line system with overhead and underground cables

2021 ◽  
Vol 10 (10) ◽  
pp. 819-824
Author(s):  
Varun
Author(s):  
Kazutaka Takizawa ◽  
So Mizuta ◽  
Masahiro Nakazawa ◽  
Toshiro Sato ◽  
Kiyohito Yamasawa ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
pp. 14
Author(s):  
S. SUREBAN MANJULA ◽  
S. MAHASHETTY SANGEETA ◽  
◽  

2018 ◽  
Vol 12 (3) ◽  
pp. 124-130
Author(s):  
Erol Can

This article deals with the energy transmission line system which feeds from solar energy at the MATLAB Simulink. So, direct voltage is considered to be converted as an alternating voltage by a 35-level inverter after the solar power plant which has the power of 110 MW an produce 360 kV of direct voltage. A line which covers 240 km of distance is preferred to transmit electrical power from the A1 point to an A2 point. Due to this, the required mathematical equations are calculated with a circuit analyzing method for the line modeling in the simulation. Experiments on the model are carried out at the MATLAB Simulink after the creation of an energy transmission line. After that, when measurements are made taking into consideration the A2 node; the capacitor voltage, the transformer current, the A2 node current, and the fault current, values are given according to the converted voltage at the frequencies of 100 Hz, 80 Hz, and 50 Hz. The obtained results demonstrate the success of the proposed line system, while power is distributed with eliminated fault at a long distance at different frequencies.


Author(s):  
Arsal Mehmood ◽  
Huzaifa Hassan ◽  
Faraz Ahmed Baig ◽  
Suhail Ahmed Shaikh

Researchers are working on techniques to mitigate failure rates as low as possible to avoid potential harm, sustain high power efficiency for this a considerable number of estimation studies were already performed and several designs of methodologies were being suggested. The transmission line performs the role of the arteries which maintain the process of transporting electricity in the transmission line. That is why it is important to maintain and manage the costs of these tracks.  Surge arrestor and shield wire application are often techniques chosen for defensive strategy in a very technique. By pushing travelling waves towards the electrical equipment mounted on the transmission line, the effects of lightning stoke on the transmission line may cause severe damage to the electrical equipment. In this review, this research study provides a review-based overview of the mechanism of occurrence of lightning along with its impact on the transmission line and the defence methods used to prevent such effects. A MATLAB / SIMULINK 2020a simulation modeling-based analysis for the incidence of lightning on the 33 kV transmission line system is observed in this regard, and a Metal-Oxide surge arrestor-based lightning fault clearance safety scheme is also suggested and discussed.


Author(s):  
Ahmed Thamer Radhi ◽  
Wael Hussein Zayer ◽  
Adel Manaa Dakhil

<span lang="EN-US">This paper presents a fast and accurate fault detection, classification and direction discrimination algorithm of transmission lines using one-dimensional convolutional neural networks (1D-CNNs) that have ingrained adaptive model to avoid the feature extraction difficulties and fault classification into one learning algorithm. A proposed algorithm is directly usable with raw data and this deletes the need of a discrete feature extraction method resulting in more effective protective system. The proposed approach based on the three-phase voltages and currents signals of one end at the relay location in the transmission line system are taken as input to the proposed 1D-CNN algorithm. A 132kV power transmission line is simulated by Matlab simulink to prepare the training and testing data for the proposed 1D- CNN algorithm. The testing accuracy of the proposed algorithm is compared with other two conventional methods which are neural network and fuzzy neural network. The results of test explain that the new proposed detection system is efficient and fast for classifying and direction discrimination of fault in transmission line with high accuracy as compared with other conventional methods under various conditions of faults.</span>


2018 ◽  
Vol 25 (s3) ◽  
pp. 36-42
Author(s):  
Yanzhe Hu ◽  
Mengjie Xu ◽  
Yang Li

Abstract In order to discuss the simulation model of the ship transmission line and the state of the transmission line, an early fault model is built according to the evolution principle of the short circuit fault of the transmission line and combining with the fault characteristics of the early fault. A small distributed ship transmission line system is built in MATLAB/ Simulink. Then, combined with the constructed fault module, the original short circuit module, and the load module, the various states (normal state, early fault state, severe early fault state, short circuit state) of the ship transmission line are stimulated, and the features of voltage signal in each state is analysed. It is concluded that, due to the normal operation of the ship transmission line system, the variation characteristics of the flow signal and voltage signal caused by the sudden load mutation, that is, the sudden load and the sudden increase load, are very similar to the changes caused by the early fault. Therefore, in order to find a more accurate early fault detection method, the state is divided into normal state, sudden load state, sudden increase and sudden decrease load state.


Sign in / Sign up

Export Citation Format

Share Document