Evaluation of Some Promising Sugarcane Cultivars under Salt affected Soil

Agrica ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 37-41
Author(s):  
S.P. Singh ◽  
A.K. Tiwari ◽  
J. Singh
Keyword(s):  
2020 ◽  
pp. 15-27

In order to study the effect of phosphogypsum and humic acids in the kinetic release of salt from salt-affected soil, a laboratory experiment was conducted in which columns made from solid polyethylene were 60.0 cm high and 7.1 cm in diameter. The columns were filled with soil so that the depth of the soil was 30 cm inside the column, the experiment included two factors, the first factor was phosphogypsum and was added at levels 0, 5, 10 and 15 tons ha-1 and the second-factor humic acids were added at levels 0, 50, 100 and 150 kg ha-1 by mixing them with the first 5 cm of column soil and one repeater per treatment. The continuous leaching method was used by using an electrolytic well water 2.72 dS m-1. Collect the leachate daily and continue the leaching process until the arrival of the electrical conductivity of the filtration of leaching up to 3-5 dS m-1. The electrical conductivity and the concentration of positive dissolved ions (Ca, Mg, Na) were estimated in leachate and the sodium adsorption ratio (SAR) was calculated. The results showed that the best equation for describing release kinetics of the salts and sodium adsorption ratio in soil over time is the diffusion equation. Increasing the level of addition of phosphogypsum and humic acids increased the constant release velocity (K) of salts and the sodium adsorption ratio. The interaction between phosphogypsum and humic acids was also affected by the constant release velocity of salts and the sodium adsorption ratio. The constant release velocity (K) of the salts and the sodium adsorption ratio at any level of addition of phosphogypsum increased with the addition of humic acids. The highest salts release rate was 216.57 in PG3HA3, while the lowest rate was 149.48 in PG0HA0. The highest release rate of sodium adsorption ratio was 206.09 in PG3HA3, while the lowest rate was 117.23 in PG0HA0.


Author(s):  
Abdelbasset Lakhdar ◽  
Chokri Hafsi ◽  
Ahmed Debez ◽  
Francesco Montemurro ◽  
Naceur Jedidi ◽  
...  

2001 ◽  
Vol 47 (9) ◽  
pp. 807-812 ◽  
Author(s):  
M Y Faituri ◽  
Y E El-Mahi ◽  
G A El-Hassan

The effects of sodium (Na+), calcium (Ca2+), magnesium (Mg2+), and boron (B) concentrations and sodicity, as measured by the sodium adsorption ratio (SAR), on the growth of a Rhizobium leguminosarum bv. viceae strain isolated from a salt-affected soil were studied. The rate of growth was measured in a yeast extract - mannitol broth, amended with salts having electrical conductivity (EC) of 4, 8, and 16 dS·m-1. Each salinity level was prepared to achieve SAR values of 10, 20, and 30 with or without graded B concentrations of 0.5, 1, 3, and 5 mg·L-1. We found that salinity levels equal to or more than 8 dS·m-1 had negative effects on Rhizobium growth during the first days of incubation, but the effects became less pronounced after 1 week. Na+ concentrations of more than 1.1 g·L-1 retarded growth, especially at high SAR values (i.e., at low Ca2+ concentrations). The retardation of growth increased with increases in EC up to 16 dS·m-1, at all sodicity levels. Mg2+ added together with Na+ or with Ca2+ + Na+ affected growth more negatively than Ca2+ + Na+ alone. The effect of Mg2+ became more pronounced with increased salinities and sodicities. It was concluded that EC of more than 4 dS·m-1 retarded growth of Rhizobium, but only at high sodicity levels. The relative specific ion effect on growth was in the order Na+ < Ca2+ < Mg2+. The harmful effect of Mg2+ on this strain was accentuated by adding Ca2+ to the cultural medium. When SAR increased from 10 to 30, Na+ had no clear effect on growth, irrespective of the accompanied cations, i.e, Ca2+, Mg2+, or Ca2+ + Mg2+. Growth was reduced by B concentrations as low as 0.5 mg·L-1, and the B effect was enhanced by increased salinity.Key words: Rhizobium leguminosarum bv. viceae, salinity, sodicity, boron.


2021 ◽  
pp. 117316
Author(s):  
Noreen Akhtar ◽  
Muhammad Aqeel ◽  
Mansoor Hameed ◽  
Haifa Abdulaziz Sakit Alhaithloul ◽  
Suliman Mohammed Alghanem ◽  
...  

2019 ◽  
Vol 84 ◽  
pp. 38-53 ◽  
Author(s):  
M.D. Meena ◽  
R.K. Yadav ◽  
B. Narjary ◽  
Gajender Yadav ◽  
H.S. Jat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document