DYNAMICANALYSIS OF THE PERIPHERAL VESSEL OF A HUMAN FINGER BY OPTICAL COHERENCE TOMOGRAPHY

2013 ◽  
Vol 3 (2) ◽  
pp. 46-49
Author(s):  
Masato Ohmi ◽  
Mitsuo Kuwabara ◽  
Masamitsu Haruna
2005 ◽  
Vol 44 (No. 26) ◽  
pp. L854-L856 ◽  
Author(s):  
Masato Ohmi ◽  
Kenji Nohara ◽  
Yoshihiro Ueda ◽  
Toshie Fuji ◽  
Masamitsu Haruna

2017 ◽  
Vol 3 (2) ◽  
pp. 227-230
Author(s):  
Jonas Golde ◽  
Lars Kirsten ◽  
Edmund Koch

AbstractWe present an approach for polarization sensitive optical coherence tomography (PS-OCT) that solely requires a modification of the light source, a buffered swept source laser. For this purpose a single-mode fiber-based Fourier domain mode locked laser is extended by fourfold buffering with manual fiber polarization controllers to emit alternating sweep polarizations, while the polarization contrast calibration is realized by a high-speed polarimeter. As the introduced setup utilizes standard scanning and detection units, the proposed method is a promising way to enhance various swept source OCT systems by polarization sensitive imaging. Preliminary measurements of a human finger nail with different polarization contrasts demonstrate the feasibility of the concept.


2011 ◽  
Author(s):  
Mitsuo Kuwabara ◽  
Natsuki Takahashi ◽  
Daisuke Takada ◽  
Masato Ohmi ◽  
Masamitsu Haruna

2009 ◽  
Vol 02 (01) ◽  
pp. 117-122 ◽  
Author(s):  
TONG WU ◽  
ZHIHUA DING ◽  
MINGHUI CHEN ◽  
LEI XU ◽  
GUOHUA SHI ◽  
...  

A swept-source optical coherence tomography (SSOCT) system based on a high-speed scanning laser source at center wavelength of 1320 nm and scanning rate of 20 kHz is developed. The axial resolution is enhanced to 8.3 μm by reshaping the spectrum in frequency domain using a window function and a wave number calibration method based on a Mach-Zender Interferometer (MZI) integrated in the SSOCT system. The imaging speed and depth range are 0.04 s per frame and 3.9 mm, respectively. The peak sensitivity of the SSOCT system is calibrated to be 112 dB. With the developed SSOCT system, optical coherence tomography (OCT) images of human finger tissue are obtained which enable us to view the sweat duct (SD), stratum corneum (SC) and epidermis (ED), demonstrating the feasibility of the SSOCT system for in vivo biomedical imaging.


2007 ◽  
Vol 177 (4S) ◽  
pp. 358-359 ◽  
Author(s):  
Christopher S. Lee ◽  
Alek Mishail ◽  
Jason M. Kim ◽  
Alexander Kirshenbaum ◽  
Howard L. Adler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document