Imaging of human finger nail-fold with MHz A-scan rate swept source optical coherence tomography

Laser Physics ◽  
2018 ◽  
Vol 28 (7) ◽  
pp. 075601
Author(s):  
Raju Poddar ◽  
Indranil Mondal
2017 ◽  
Vol 3 (2) ◽  
pp. 227-230
Author(s):  
Jonas Golde ◽  
Lars Kirsten ◽  
Edmund Koch

AbstractWe present an approach for polarization sensitive optical coherence tomography (PS-OCT) that solely requires a modification of the light source, a buffered swept source laser. For this purpose a single-mode fiber-based Fourier domain mode locked laser is extended by fourfold buffering with manual fiber polarization controllers to emit alternating sweep polarizations, while the polarization contrast calibration is realized by a high-speed polarimeter. As the introduced setup utilizes standard scanning and detection units, the proposed method is a promising way to enhance various swept source OCT systems by polarization sensitive imaging. Preliminary measurements of a human finger nail with different polarization contrasts demonstrate the feasibility of the concept.


2009 ◽  
Vol 02 (01) ◽  
pp. 117-122 ◽  
Author(s):  
TONG WU ◽  
ZHIHUA DING ◽  
MINGHUI CHEN ◽  
LEI XU ◽  
GUOHUA SHI ◽  
...  

A swept-source optical coherence tomography (SSOCT) system based on a high-speed scanning laser source at center wavelength of 1320 nm and scanning rate of 20 kHz is developed. The axial resolution is enhanced to 8.3 μm by reshaping the spectrum in frequency domain using a window function and a wave number calibration method based on a Mach-Zender Interferometer (MZI) integrated in the SSOCT system. The imaging speed and depth range are 0.04 s per frame and 3.9 mm, respectively. The peak sensitivity of the SSOCT system is calibrated to be 112 dB. With the developed SSOCT system, optical coherence tomography (OCT) images of human finger tissue are obtained which enable us to view the sweat duct (SD), stratum corneum (SC) and epidermis (ED), demonstrating the feasibility of the SSOCT system for in vivo biomedical imaging.


2020 ◽  
Vol 10 (14) ◽  
pp. 4936
Author(s):  
Pingping Jia ◽  
Hong Zhao ◽  
Yuwei Qin

A high-speed, high-resolution swept-source optical coherence tomography (SS-OCT) is presented for focusing lens imaging and a k-domain uniform algorithm is adopted to find the wave number phase equalization. The radius of curvature of the laser focusing lens was obtained using a curve-fitting algorithm. The experimental results demonstrate that the measuring accuracy of the proposed SS-OCT system is higher than the laser confocal microscope. The SS-OCT system has great potential for surface topography measurement and defect inspection of the focusing lens.


Author(s):  
José Ignacio Fernández-Vigo ◽  
Hang Shi ◽  
Bárbara Burgos-Blasco ◽  
Lucía De-Pablo-Gómez-de-Liaño ◽  
Ignacio Almorín-Fernández-Vigo ◽  
...  

2021 ◽  
pp. 153537022110285
Author(s):  
Hao Zhou ◽  
Tommaso Bacci ◽  
K Bailey Freund ◽  
Ruikang K Wang

The choroid provides nutritional support for the retinal pigment epithelium and photoreceptors. Choroidal dysfunction plays a major role in several of the most important causes of vision loss including age-related macular degeneration, myopic degeneration, and pachychoroid diseases such as central serous chorioretinopathy and polypoidal choroidal vasculopathy. We describe an imaging technique using depth-resolved swept-source optical coherence tomography (SS-OCT) that provides full-thickness three-dimensional (3D) visualization of choroidal anatomy including topographical features of individual vessels. Enrolled subjects with different clinical manifestations within the pachychoroid disease spectrum underwent 15 mm × 9 mm volume scans centered on the fovea. A fully automated method segmented the choroidal vessels using their hyporeflective lumens. Binarized choroidal vessels were rendered in a 3D viewer as a vascular network within a choroidal slab. The network of choroidal vessels was color depth-encoded with a reference to the Bruch’s membrane segmentation. Topographical features of the choroidal vasculature were characterized and compared with choroidal imaging obtained with indocyanine green angiography (ICGA) from the same subject. The en face SS-OCT projections of the larger choroid vessels closely resembled to that obtained with ICGA, with the automated SS-OCT approach proving additional depth-encoded 3D information. In 16 eyes with pachychoroid disease, the SS-OCT approach added clinically relevant structural details, including choroidal thickness and vessel depth, which the ICGA studies could not provide. Our technique appears to advance the in vivo visualization of the full-thickness choroid, successfully reveals the topographical features of choroidal vasculature, and shows potential for further quantitative analysis when compared with other choroidal imaging techniques. This improved visualization of choroidal vasculature and its 3D structure should provide an insight into choroid-related disease mechanisms as well as their responses to treatment.


Sign in / Sign up

Export Citation Format

Share Document