scholarly journals Percutaneous Exposures of volunteers to polychromatic light (480-3400 nm) trigger systemic mechanism of the human myeloma cells growth delay without any effect on bortezomib cytotoxicity in vitro

LASER THERAPY ◽  
2019 ◽  
Vol 28 (3) ◽  
pp. 164-170
Author(s):  
Natalia V. Kalmykova ◽  
Anna V. Shcherbanyuk ◽  
Sergei I. Moiseev ◽  
Natalia V. Bichkova ◽  
Natalia I. Davidova ◽  
...  
Blood ◽  
1993 ◽  
Vol 82 (2) ◽  
pp. 564-570 ◽  
Author(s):  
MM Kawano ◽  
N Huang ◽  
H Harada ◽  
Y Harada ◽  
A Sakai ◽  
...  

Abstract With regard to the expression of adhesion molecules, human myeloma cells freshly isolated from bone marrow were heterogeneous. By two- color analysis with anti-VLA-5 antibody (PE staining) and FITC-labeled anti-CD38 antibody, we found all myeloma cells located at CD38-strong positive (CD38++) fraction and identified two subpopulations among these myeloma cells: CD38++ VLA-5-(VLA-5-) myeloma cells and CD38++ VLA- 5+ (VLA-5+) myeloma cells. To clarify the biologic character of these two subpopulations, the morphology, in vitro proliferative activity and in vitro M-protein secretion were examined in each fraction isolated by the purification procedure or a cell sorter. Morphologic examination showed that VLA-5- myeloma cells were mostly immature or plasmablastic and VLA-5+ cells were mature myeloma cells. Furthermore, VLA-5- myeloma cells proliferated markedly in vitro and responded to interleukin 6 (IL- 6), a growth factor for myeloma cells, while VLA-5+ myeloma cells showed very low uptakes of 3H-thymidine and no responses to IL-6 but secreted higher amounts of M-protein (immunoglobulin) in vitro significantly. Therefore, we could clarify here heterogeneity of human myeloma cells in the bone marrow with regard to the expression of VLA- 5, one of integrin adhesion molecules; VLA-5- myeloma cells were proliferative immature cells and VLA-5+ cells were mature myeloma cells.


1990 ◽  
Vol 2 (5) ◽  
pp. 271-277
Author(s):  
B. C. Millar ◽  
J. A. Maitland ◽  
J. B. G. Bell ◽  
T. J. McElwain

Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1718-1722 ◽  
Author(s):  
H Tanaka ◽  
O Tanabe ◽  
K Iwato ◽  
H Asaoku ◽  
H Ishikawa ◽  
...  

Abstract The effects of interferon-alpha (IFN alpha) on in vitro proliferation and M-protein secretion in human myeloma cells were investigated. Human myeloma cells were purified from bone marrow aspirates in 12 multiple myeloma patients. Purified myeloma cells were cultured for 48 hours with IFN alpha at its lower concentrations (0.1 to 100 U/mL). The cells were then pulsed with 3H-TdR for the last 12 hours and 3H-TdR uptake was measured (in vitro proliferation). After 48-hour culture, supernatants were harvested and the amount of M-protein in these fluids were measured by enzyme-linked immunosorbent assay (ELISA) (in vitro M- protein secretion). In vitro M-protein secretions of myeloma cells were significantly suppressed even at 0.1 U/mL of IFN alpha, while 3H-TdR uptakes were not so suppressed until 10 or 100 U/mL of IFN alpha were added. The expressions of secretory immunoglobulin (Ig) mRNA of these myeloma cells were also selectively suppressed by IFN alpha. Furthermore, after IFN alpha had been administered intramuscularly, 3 to 6 x 10(6) U/d for at least 1 month, in vitro M-protein secretions of these myeloma cells were decreased compared with those before IFN alpha administration. Therefore, these results suggest that IFN alpha has more sensitive inhibitory effect on M-protein secretion of human myeloma cells rather than on myeloma cell proliferation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3534-3534
Author(s):  
Mohd S. Iqbal ◽  
Ken-ichiro Otsuyama ◽  
Karim Shamsasenjan ◽  
Saeid Abroun ◽  
Jakia Amin ◽  
...  

Abstract Human myeloma cells have the marked phenotypic heterogeneity of surface marker expressions, possibly because of loss of PAX-5 expression. Especially, ectopic expression of CD56, one of non-B cell lineage markers, is frequently detected on primary myeloma cells from more than 80% patients with overt myeloma. However, only 2 (NOP2 and AMO1) out of 10 myeloma cell lines were CD56(+). In primary myeloma cells as well as CD56(−) myeloma cell lines, the treatment with forskolin could induce the expression of CD56 in the in vitro culture. In most CD56(+) primary myeloma cells as well as myeloma cell lines, the expressions of neuronal cell markers such as neuron specific enolase (NSE), nestin, β-tubulin III or chromogranin A were found coincidentally. By gene expression profiling, CD56(+) myeloma cell lines showed the marked expressions of transcription factors involved in neuronal cell lineage. On the other hand, addition of IL-6 down-regulated the expression of CD56 in CD56(+) myeloma cell lines in the in vitro culture. In 13 out of 60 patients with overt myeloma, these myeloma cells showed CD56(−) and their values of plasma CRP were significantly increased and MPC-1(−)CD45(+) immature myeloma cells were also increased compared to those in CD56(+) myeloma cases. Therefore, these results indicate that the expression of CD56 is possibly due to phenotypic changes into neuronal cell lineage, and IL-6 can block these phenotypic changes, keeping PAX-5(−) myeloma cells being uncommitted cells to any lineage.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4737-4737
Author(s):  
Abul Islam ◽  
Ken-ichiro Otsuyama ◽  
Jakia Amin ◽  
Saeid Abroun ◽  
Karim Shamsasenjan ◽  
...  

Abstract The chemokine, stromal cell-derived factor 1 (SDF-1; CXCL12) and its receptor, CXCR4 are considered to be essentially required for plasma cell homing to the bone marrow (BM). It is well known that plasma cells in the BM (long-lived plasma cells) survive for a long time and have the constitutively high NF-kB activity. Since human myeloma cells are considered to be derived from these committed long-lived plasma cells, we investigated the role of SDF-1 on the survival of primary myeloma cells from myeloma patients and the possible relationship with NF-kB activity. First, we confirmed that all primary myeloma cells expressed CXCR4 but not CCR9 or CCR10 receptors on their surface and the levels of CXCR4 expression apparently correlated with maturity of BM plasma cells; mature myeloma cells (MPC-1+) as well as polyclonal plasma cells expressed higher levels of CXCR4 than those on immature myeloma cells (MPC-1-). The production of SDF-1 was found strongly in BM stromal cells but not in primary myeloma cells as well as myeloma cell lines. On the other hand, high DNA binding activity of NF-kB was constitutively detected in primary myeloma cells as well as myeloma cell lines, and these NF-kB activities significantly correlated with the expression levels of CD54 on their surface, for CD54 gene is one of the strict NF-kB target genes. Based on the expression levels of CD54 protein, interestingly, primary myeloma cells showed weaker NF-kB activities than those in monoclonal plasma cells from MGUS and polyclonal plasma cells from polyclonal gammopathy. Plasma concentrations of SDF-1 were also significantly correlated to the expression levels of CD54 on primary myeloma cells significantly (P<0.01). Furthermore, it was confirmed that addition of SDF-1 significantly increased the expression levels of CD54 in the in vitro culture of primary myeloma cells. Therefore, these results indicate that SDF-1 is responsible for high expression levels of CD54 and possibly the constitutively high NF-kB activity in primary myeloma cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1701-1701
Author(s):  
Ha-Yon Kim ◽  
Seong-Woo Kim ◽  
Hyo-Jin Lee ◽  
Hwan-Jung Yun ◽  
Samyong Kim ◽  
...  

Abstract AMD3100, an antagonist of the chemokine receptor CXCR4, is about to be used clinically for the peripheral mobilization of hematopoietic stem cells, especially in patients with lymphoma and multiple myeloma. However, AMD3100 has been shown to activate a G protein coupled with CXCR4 and thus acts as a partial CXCR4 agonist in vitro. Although stromal cell-derived factor-1 (SDF-1) alone has minimal or negligible effects on the growth and survival of myeloma cells in vitro, many reports are consistent with the SDF-1/CXCR4 axis being involved in the progression of myeloma. Therefore, it is necessary to address the question of whether AMD3100 functions as a partial agonist for CXCR4 in myeloma cells, before it is released for wide clinical application. In this study, we explored whether AMD3100 affects the proliferation and survival of myeloma cells in vitro. As demonstrated previously, AMD3100 markedly inhibited the SDF-1 induced chemotaxis of myeloma cells, including three cell lines (RPMI8226, U266, and ARH77 cells), and CD138+ primary human myeloma cells. AMD3100 also induced internalization of CXCR4. SDF-1 alone did not stimulate the proliferation of these myeloma cells, nor did it rescue the cells from apoptosis induced by serum deprivation. By contrast, AMD3100 at 10−5M enhanced the proliferation of all three myeloma cell lines in serum-free condition by up to 2-folds in 3-day cultures, which was abrogated by pretreating the cells with pertussis toxin (PTX). This phenomenon was also observed with CD138+ primary human myeloma cells. In addition, AMD3100 enhanced the proliferation of U266 and ARH77 cells induced by interleukin-6 (IL-6). AMD3100 partially inhibited the apoptosis induced by serum deprivation, and the anti-apoptotic effect of AMD3100 was further enhanced in the presence of IL-6. AMD3100 on its own induced the phosphorylation of Akt and ERK1/2 but not Stat3 and p38/MAPK in RPMI8226 and U266 cells. The phosphorylation was also inhibited by pretreating the cells with PTX. The signal blocking agents wortmannin, PD98056, SB203580, and rapamycin did not affect the AMD3100-induced proliferation of RPMI8226 cells. LY294002 at concentrations not inhibiting spontaneous proliferation (5 μM or less) did not affect AMD3100-induced proliferation of the cells. AG490 inhibited spontaneous proliferation and AMD3100-induced proliferation of the cells in a dose-dependent manner. Accordingly, the signal-blocking effects were unclear. However, these results show that AMD3100 partially overcame the strong growth inhibition of myeloma cells induced by AG490. Our results indicate that AMD3100 can induce the phosphorylation of signaling molecules and stimulate the proliferation of myeloma cells, through signaling via G-protein pathway.


Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4727-4737 ◽  
Author(s):  
Cosette Rebouissou ◽  
John Wijdenes ◽  
Patrick Autissier ◽  
Karin Tarte ◽  
Valerie Costes ◽  
...  

Agonist antihuman gp130 transducer monoclonal antibodies (MoAbs) were used in SCID mice to grow myeloma cells whose survival and proliferation is dependent on gp130 transducer activation. The agonist anti-gp130 MoAbs neither bound to murine gp130 nor activated murine cells and, as a consequence, did not induce interleukin-6 (IL-6)–related toxicities in mice. They have a 2-week half-life in vivo when injected in the peritoneum. The agonist antibodies made possible the in vivo growth of exogenous IL-6–dependent human myeloma cells as well as that of freshly explanted myeloma cells from 1 patient with secondary plasma cell leukemia. Tumors occurred 4 to 10 weeks after myeloma cell graft and weighed 3 to 5 g. They grew as solid tumors in the peritoneal cavity and metastasized to the different peritoneal organs: liver, pancreas, spleen, and intestine. Tumoral cells were detected in blood and bone marrow of mice grafted with the XG-2 myeloma cells. Tumoral cells grown in SCID mice had kept the phenotypic characteristics of the original tumoral cells and their in vitro growth required the presence of IL-6 or agonist anti-gp130 MoAbs. Myeloma cells from 4 patients with medullary involvement persisted for more than 1 year as judged by detectable circulating human Ig. However, no tumors were detected, suggesting a long-term survival of human myeloma cells without major proliferation. These observations paralleled those made in in vitro cultures as well as the tumor growth pattern in these patients. This gp130 transducer-dependent SCID model of multiple myeloma should be useful to study various therapeutical approaches in multiple myeloma in vivo.


1995 ◽  
Vol 89 (3) ◽  
pp. 555-560 ◽  
Author(s):  
Antonio Palumbo ◽  
Silvano Battaglio ◽  
Patrizia Napoli ◽  
Benedetto Bruno ◽  
Paola Omedè ◽  
...  

1988 ◽  
Vol 6 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Régis Bataille ◽  
Jean Grenier ◽  
Thérèse Commes

Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1718-1722
Author(s):  
H Tanaka ◽  
O Tanabe ◽  
K Iwato ◽  
H Asaoku ◽  
H Ishikawa ◽  
...  

The effects of interferon-alpha (IFN alpha) on in vitro proliferation and M-protein secretion in human myeloma cells were investigated. Human myeloma cells were purified from bone marrow aspirates in 12 multiple myeloma patients. Purified myeloma cells were cultured for 48 hours with IFN alpha at its lower concentrations (0.1 to 100 U/mL). The cells were then pulsed with 3H-TdR for the last 12 hours and 3H-TdR uptake was measured (in vitro proliferation). After 48-hour culture, supernatants were harvested and the amount of M-protein in these fluids were measured by enzyme-linked immunosorbent assay (ELISA) (in vitro M- protein secretion). In vitro M-protein secretions of myeloma cells were significantly suppressed even at 0.1 U/mL of IFN alpha, while 3H-TdR uptakes were not so suppressed until 10 or 100 U/mL of IFN alpha were added. The expressions of secretory immunoglobulin (Ig) mRNA of these myeloma cells were also selectively suppressed by IFN alpha. Furthermore, after IFN alpha had been administered intramuscularly, 3 to 6 x 10(6) U/d for at least 1 month, in vitro M-protein secretions of these myeloma cells were decreased compared with those before IFN alpha administration. Therefore, these results suggest that IFN alpha has more sensitive inhibitory effect on M-protein secretion of human myeloma cells rather than on myeloma cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document