scholarly journals Evaluation of horA and horC as genetic markers for the determination of beer spoilage ability in lactic acid bacteria

2007 ◽  
Vol 102 (4) ◽  
pp. 314-322
Author(s):  
Koji SUZUKI ◽  
Kazumaru IIJIMA ◽  
Shizuka ASANO ◽  
Hidetoshi KURIYAMA ◽  
Yasushi KITAGAWA
2005 ◽  
Vol 71 (9) ◽  
pp. 5089-5097 ◽  
Author(s):  
Koji Suzuki ◽  
Kazumaru Iijima ◽  
Kazutaka Ozaki ◽  
Hiroshi Yamashita

ABSTRACT We have isolated a hop-sensitive variant of the beer spoilage bacterium Lactobacillus lindneri DSM 20692. The variant lost a plasmid carrying two contiguous open reading frames (ORF s) designated horB L and horC L that encode a putative regulator and multidrug transporter presumably belonging to the resistance-nodulation-cell division superfamily. The loss of hop resistance ability occurred with the loss of resistance to other drugs, including ethidium bromide, novobiocin, and cetyltrimethylammonium bromide. PCR and Southern blot analysis using 51 beer spoilage strains of various species of lactic acid bacteria (LAB) revealed that 49 strains possessed homologs of horB and horC. No false-positive results have been observed for nonspoilage LAB or frequently encountered brewery isolates. These features are superior to those of horA and ORF 5, previously reported genetic markers for determining the beer spoilage ability of LAB. It was further shown that the combined use of horB/horC and horA is able to detect all 51 beer spoilage strains examined in this study. Furthermore sequence comparison of horB and horC homologs identified in four different beer spoilage species indicates these homologs are 96.6 to 99.5% identical, which is not typical of distinct species. The wide and exclusive distribution of horB and horC homologs among beer spoilage LAB and their sequence identities suggest that the hop resistance ability of beer spoilage LAB has been acquired through horizontal gene transfer. These insights provide a foundation for applying trans-species genetic markers to differentiating beer spoilage LAB including previously unencountered species.


2007 ◽  
Vol 104 (4) ◽  
pp. 334-338 ◽  
Author(s):  
Shizuka Asano ◽  
Koji Suzuki ◽  
Kazumaru Iijima ◽  
Yasuo Motoyama ◽  
Hidetoshi Kuriyama ◽  
...  

10.5219/1604 ◽  
2021 ◽  
Vol 15 ◽  
pp. 995-1004
Author(s):  
Aleš Vavřiník ◽  
Kateřina Štůsková ◽  
Adrian Alumbro ◽  
Methusela Perrocha ◽  
Lenka Sochorová ◽  
...  

The presented work aimed to study the inhibition using nanoparticles produced by the green synthesis in selected acetic acid and lactic acid bacteria, which are related to viticulture. The degree of ability to eliminate silver particles produced by green syntheses was determined using the plate method on Petri dishes. This is done using two different approaches - the method of direct application of the solution to the surface of the inoculated medium (determination of inhibition zones) and the method of application using nanoparticles to the inoculated medium. Gluconobacter oxydans (CCM 3618) and Acetobacter aceti (CCM 3620T) were studied from acet acetic bacteria. The lactic acid bacteria were Lactobacillus brevis (CCM 1815) and Pediococcus damnosus (CCM 2465). The application of silver nanoparticles was always in concentrations of 0, 0.0625, 0.125, 0.25, 0.5, and 1 g.L-1. All applied concentrations of silver nanoparticles showed an inhibitory effect on the monitored microorganisms. Silver particles could be used in wine technology for their antibacterial effects, mainly to inhibit microorganisms during vinification, as a substitute for sulfur dioxide.


Sign in / Sign up

Export Citation Format

Share Document