scholarly journals Measurement Uncertainty of Surface Temperature Distributions for Laser Powder Bed Fusion Processes

Author(s):  
David C. Deisenroth ◽  
Sergey Mekhontsev ◽  
Brandon Lane ◽  
Leonard Hanssen ◽  
Ivan Zhirnov ◽  
...  

This paper describes advances in measuring the characteristic spatial distribution of surface temperature and emissivity during laser-metal interaction under conditions relevant for laser powder bed fusion (LPBF) additive manufacturing processes. Detailed descriptions of the measurement process, results, and approaches to determining uncertainties are provided. Measurement uncertainties have complex dependencies on multiple process parameters, so the methodology is demonstrated on one set of process parameters and one material. Well-established literature values for high-purity nickel solidification temperature and emissivity at the solidification temperature were used to evaluate the predicted uncertainty of the measurements. The standard temperature measurement uncertainty is found to be approximately 0.9 % of the absolute temperature (16 °C), and the standard relative emissivity measurement uncertainty is found to be approximately 8 % at the solidification point of high-purity nickel, both of which are satisfactory. This paper also outlines several potential sources of test uncertainties, which may require additional experimental evaluation. The largest of these are the metal vapor and ejecta that are produced as process by-products, which can potentially affect the imaging quality, reflectometry results, and thermal signature of the process, while also affecting the process of laser power delivery. Furthermore, the current paper focuses strictly on the uncertainties of the emissivity and temperature measurement approach and therefore does not detail a variety of uncertainties associated with experimental controls that must be evaluated for future generation of reference data.

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 796
Author(s):  
Aya Takase ◽  
Takuya Ishimoto ◽  
Naotaka Morita ◽  
Naoko Ikeo ◽  
Takayoshi Nakano

Ti-6Al-4V alloy fabricated by laser powder bed fusion (L-PBF) and electron beam powder bed fusion (EB-PBF) techniques have been studied for applications ranging from medicine to aviation. The fabrication technique is often selected based on the part size and fabrication speed, while less attention is paid to the differences in the physicochemical properties. Especially, the relationship between the evolution of α, α’, and β phases in as-grown parts and the fabrication techniques is unclear. This work systematically and quantitatively investigates how L-PBF and EB-PBF and their process parameters affect the phase evolution of Ti-6Al-4V and residual stresses in the final parts. This is the first report demonstrating the correlations among measured parameters, indicating the lattice strain reduces, and c/a increases, shifting from an α’ to α+β or α structure as the crystallite size of the α or α’ phase increases. The experimental results combined with heat-transfer simulation indicate the cooling rate near the β transus temperature dictates the resulting phase characteristics, whereas the residual stress depends on the cooling rate immediately below the solidification temperature. This study provides new insights into the previously unknown differences in the α, α’, and β phase evolution between L-PBF and EB-PBF and their process parameters.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.


Author(s):  
Rafael de Moura Nobre ◽  
Willy Ank de Morais ◽  
Matheus Tavares Vasques ◽  
Jhoan Guzmán ◽  
Daniel Luiz Rodrigues Junior ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4879
Author(s):  
Mireia Vilanova ◽  
Rubén Escribano-García ◽  
Teresa Guraya ◽  
Maria San Sebastian

A method to find the optimum process parameters for manufacturing nickel-based superalloy Inconel 738LC by laser powder bed fusion (LPBF) technology is presented. This material is known to form cracks during its processing by LPBF technology; thus, process parameters have to be optimized to get a high quality product. In this work, the objective of the optimization was to obtain samples with fewer pores and cracks. A design of experiments (DoE) technique was implemented to define the reduced set of samples. Each sample was manufactured by LPBF with a specific combination of laser power, laser scan speed, hatch distance and scan strategy parameters. Using the porosity and crack density results obtained from the DoE samples, quadratic models were fitted, which allowed identifying the optimal working point by applying the response surface method (RSM). Finally, five samples with the predicted optimal processing parameters were fabricated. The examination of these samples showed that it was possible to manufacture IN738LC samples free of cracks and with a porosity percentage below 0.1%. Therefore, it was demonstrated that RSM is suitable for obtaining optimum process parameters for IN738LC alloy manufacturing by LPBF technology.


2020 ◽  
Vol 111 (9-10) ◽  
pp. 2891-2909
Author(s):  
Mahyar Khorasani ◽  
AmirHossein Ghasemi ◽  
Umar Shafique Awan ◽  
Elahe Hadavi ◽  
Martin Leary ◽  
...  

Abstract When reporting surface quality, the roughest surface is a reference for the measurements. In LPBF due to recoil pressure and scan movement, asymmetric surface is shaped, and surface roughness has different values in different measurement orientations. In this research, the influence of the laser powder bed fusion (LPBF) process parameters on surface tension and roughness of Ti-6AI-4 V parts in three orientations are investigated. To improve the mechanical properties, heat treatment was carried out and added to the designed matrix to generate a comprehensive data set. Taguchi design of experiment was employed to print 25 samples with five process parameters and post-processing. The effect and interaction of the parameters on the formation of surface profile comprising tension, morphology and roughness in various directions have been analysed. The main contribution of this paper is developing a model to approximate the melting pool temperature and surface tension based on the process parameters. Other contributions are an analysis of process parameters to determine the formation and variation of surface tension and roughness and explain the governing mechanisms through rheological phenomena. Results showed that the main driving factors in the variation of surface tension and formation of the surface profile are thermophysical properties of the feedstock, rheology and the temperature of the melting pool. Also, the results showed that while the value of surface tension is the same for each test case, morphology and the value of roughness are different when analysing the surface in perpendicular, parallel and angled directions to laser movement.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5400 ◽  
Author(s):  
Aron Pfaff ◽  
Martin Jäcklein ◽  
Max Schlager ◽  
Wilfried Harwick ◽  
Klaus Hoschke ◽  
...  

For certain additive manufacturing technologies the choice of available materials is currently limited. The development of process parameters is especially elaborate for powder bed technologies. Currently, there is no common approach concerning the procedure and documentation. This work proposes a methodology for the initial development of process parameters for new L-PBF (laser powder bed fusion) alloys. Key elements are the examination of the laser–powder-bed interaction by single laser track experiments and an iterative design of experiment (DoE) approach for the development of volumetric parameters. Two types of single laser track experiments are presented and provide information regarding the laser track width and depth as well as the resulting surface roughness and melt pool classification. Based on the information gained, suitable process windows for a DoE study can be defined by avoiding parameter settings unsuitable for production or measurement. Gradually, input variables are identified and iterative steps reduce the process window in order to optimize the desired target values. Near-surface exposure parameters are developed by a one-dimensional parameter variation and metallographic investigations. The approach is primarily designed for the initial development of process parameters for new L-PBF alloys. However, the information gained can also be used to optimize established parameter sets regarding new target values (productivity, mechanical properties), optimize process parameters for specific components or for a microstructural design.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1064
Author(s):  
Shinya Hibino ◽  
Tsubasa Todo ◽  
Takuya Ishimoto ◽  
Ozkan Gokcekaya ◽  
Yuichiro Koizumi ◽  
...  

The influence of various laser powder bed fusion (LPBF) process parameters on the crystallographic textures and mechanical properties of a typical Ni-based solid-solution strengthened alloy, Hastelloy-X, was examined. Samples were classified into four groups based on the type of crystallographic texture: single crystalline-like microstructure with <100>//build direction (BD) (<100>-SCM), single crystalline-like microstructure with <110>//BD (<110>-SCM), crystallographic lamellar microstructure (CLM), or polycrystalline microstructure (PCM). These four crystallographic textures were realized in Hastelloy-X for the first time here to the best of our knowledge. The mechanical properties of the samples varied depending on their texture. The tensile properties were affected not only by the Schmid factor but also by the grain size and the presence of lamellar boundaries (grain boundaries). The lamellar boundaries at the interface between the <110>//BD oriented main layers and the <100>//BD-oriented sub-layers of CLM contributed to the resistance to slip transmission and the increased proof stress. It was possible to control a wide range of crystallographic microstructures via the LPBF process parameters, which determines the melt pool morphology and solidification behavior.


Sign in / Sign up

Export Citation Format

Share Document