scholarly journals Mean Differential Continuous Pulse Method for Accurate Optical Measurements of Light-Emitting Diodes and Laser Diodes

Author(s):  
Yuqin Zong ◽  
Jeff Hulett ◽  
Naomasa Koide ◽  
Yoshiki Yamaji ◽  
C. Cameron Miller

Limited sources exist for the application of germicidal ultraviolet (GUV) radiation. Ultraviolet light-emitting diodes (UV-LEDs) have significantly improved in efficiency and are becoming another viable source for GUV. We have developed a mean differential continuous pulse method (M-DCP method) for optical measurements of light-emitting diodes (LEDs) and laser diodes (LDs). The new M-DCP method provides an improvement on measurement uncertainty by one order of magnitude compared to the unpublished differential continuous pulse method (DCP method). The DCP method was already a significant improvement of the continuous pulse method (CP method) commonly used in the LED industry. The new M-DCP method also makes it possible to measure UV-LEDs with high accuracy. Here, we present the DCP method, discuss the potential systematic error sources in it, and present the M-DCP method along with its reduced systematic errors. This paper also presents the results of validation measurement of LEDs using the M-DCP method and common test instruments.

2020 ◽  
Vol 19 (8) ◽  
pp. 1009-1021
Author(s):  
Tae-Rin Kwon ◽  
Sung-Eun Lee ◽  
Jong Hwan Kim ◽  
You Na Jang ◽  
Su-Young Kim ◽  
...  

Ultraviolet light-emitting diodes (UV-LEDs) are a novel light source for phototherapy.


2018 ◽  
Vol 83 ◽  
pp. 356-362 ◽  
Author(s):  
Lei Zhang ◽  
Yiting Zheng ◽  
Jiale Mao ◽  
Shuang Wang ◽  
Ruotian Fu ◽  
...  

2021 ◽  
Author(s):  
C. Yuqin Zong ◽  
Cameron Miller

We have developed a new calibration capability for 200 nm to 400 nm ultraviolet light-emitting diodes (UV LEDs) using a Type D gonio-spectroradiometer. The recently-introduced mean differential continuous pulse (M-DCP) method is used to overcome the measurement difficulty associated with the initial forward voltage, VF, anomaly of a UV LED, which makes it impossible to use VF to infer junction temperature, TJ, during pulsed operation. The new measurement facility was validated indirectly by comparing the measured total luminous flux of a white LED with that measured using the NIST’s 2.5 m absolute integrating sphere. The expanded calibration uncertainty for the total radiant flux is approximately 2 % to 3 % (k = 2) depending the wavelength of the UV LED.


2004 ◽  
Vol 831 ◽  
Author(s):  
R. J. Kaplar ◽  
S. R. Kurtz ◽  
D. D. Koleske ◽  
A. A. Allerman ◽  
A. J. Fischer ◽  
...  

ABSTRACTForward-to-reverse bias step-recovery measurements were performed on In.07Ga.93N/GaN and Al.36Ga.64N/Al.46Ga.54N quantum-well (QW) light-emitting diodes grown on sapphire. With the QW sampling the minority-carrier hole density at a single position, distinctive two-phase optical decay curves were observed. Using diffusion equation solutions to self-consistently model both the electrical and optical responses, hole transport parameters τp = 758 ± 44 ns, Lp = 588 ± 45 nm, and μp = 0.18 ± 0.02 cm2/Vs were obtained for GaN. The mobility was thermally activated with an activation energy of 52 meV, suggesting trap-modulated transport. Optical measurements of sub-bandgap peaks exhibited slow responses approaching the bulk lifetime. For Al.46Ga.54N, a longer lifetime of τp = 3.0 μs was observed, and the diffusion length was shorter, Lp ≈ 280 nm. Mobility was an order of magnitude smaller than in GaN, μp ≈ 10−2 cm2/Vs, and was insensitive to temperature, suggesting hole transport through a network of defects.


2002 ◽  
Vol 743 ◽  
Author(s):  
Maxim Shatalov ◽  
Vinod Adivarahan ◽  
Jian Ping Zhang ◽  
Ashay Chitnis ◽  
Shuai Wu ◽  
...  

ABSTRACTWe present a study of the electrical and optical characteristics of 280 nm emission deep ultraviolet light emitting diodes (LED) at room and cryogenic temperatures. At low bias the defect assisted carrier tunneling primarily determines the current conduction. The room-temperature spectral performance and optical power are limited mostly by pronounced deep level defect assisted radiative and non-radiative recombination as well as poor electron confinement in the active region. At temperatures below 100 K the electroluminescence peak intensity increases by more than one order of magnitude due to suppression of non-radiative recombination channels indicating that with a proper device design and improved material quality, milliwatt power 280 nm LED are viable.


2014 ◽  
Vol 5 (1) ◽  
pp. 17-27 ◽  
Author(s):  
M. J. Crook ◽  
B. Jefferson ◽  
O. Autin ◽  
J. MacAdam ◽  
A. Nocker

The current technological status of ultraviolet light emitting diodes (UV-LEDs) has reached a point where small-scale ultraviolet (UV) water disinfection applications, that is, for greywater reuse appear increasingly promising. This study compares the germicidal and economical aspects of UV-LEDs with traditional UV. Pure cultures and environmental greywater samples were exposed to different radiation doses from both UV sources with the germicidal effect comparative at equivalent doses. The impact of particle size on disinfection efficiency was investigated in two greywater fractions of varying mean particle size. Disinfection efficiency was found to be dependent on particle size with larger particles reducing microbial inactivation for both UV sources. Post-UV blending to detach particle-associated coliforms resulted in higher bacterial counts for both UV sources although to a lesser extent for UV-LEDs suggesting that it might be less affected by the presence of particles than traditional UV sources, possibly due to the UV radiation being emitted by multiple diodes at different angles compared to the traditional UV collimated beam setup. Nevertheless, removal of particles prior to UV disinfection is necessary to meet strict water reuse standards. Although UV-LEDs are currently prohibitively expensive, improvements in performance indicators might make this technology economically competitive within the next few years.


2006 ◽  
Vol 955 ◽  
Author(s):  
Ramya Chandrasekaran ◽  
Anirban Bhattacharyya ◽  
Ryan France ◽  
Christos Thomidis ◽  
Adrian Williams ◽  
...  

ABSTRACTIn this paper, we report the growth and fabrication of non-polar A-plane AlGaN multiple quantum well based ultraviolet light emitting diodes (UV-LEDs). The LEDs were grown on R-plane sapphire substrates using molecular beam epitaxy (MBE). The Current-voltage characteristics of the fabricated devices demonstrated rectifying behavior with a series resistance of 38 ohms. An electro-luminescence emission at 338 nm was obtained.


2011 ◽  
Author(s):  
Christopher Chua ◽  
Zhihong Yang ◽  
Clifford Knollenberg ◽  
Mark Teepe ◽  
Bowen Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document