Ultraviolet light emitting diodes using non-polar A-plane AlGaN multiple quantum wells

2006 ◽  
Vol 955 ◽  
Author(s):  
Ramya Chandrasekaran ◽  
Anirban Bhattacharyya ◽  
Ryan France ◽  
Christos Thomidis ◽  
Adrian Williams ◽  
...  

ABSTRACTIn this paper, we report the growth and fabrication of non-polar A-plane AlGaN multiple quantum well based ultraviolet light emitting diodes (UV-LEDs). The LEDs were grown on R-plane sapphire substrates using molecular beam epitaxy (MBE). The Current-voltage characteristics of the fabricated devices demonstrated rectifying behavior with a series resistance of 38 ohms. An electro-luminescence emission at 338 nm was obtained.

2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Shweta Natarajan ◽  
Yishak Habtemichael ◽  
Samuel Graham

Methods used to measure the temperature of AlxGa1−xN based ultraviolet light emitting diodes (UV LEDs) are based on optical or electrical phenomena that are sensitive to either local, surface, or average temperatures within the LED. A comparative study of the temperature rise of AlxGa1−xN UV LEDs measured by micro-Raman spectroscopy, infrared (IR) thermography, and the forward voltage method is presented. Experimental temperature measurements are provided for UV LEDs with micropixel and interdigitated contact geometries, as well as for a number of different packaging configurations. It was found that IR spectroscopy was sensitive to optical properties of the device layers, while forward voltage method provided higher temperatures, in general. Raman spectroscopy was used to measure specific layers within the LED, showing that growth substrate temperatures in the flip-chip LEDs agreed more closely to IR measurements while layers closer to the multiple quantum wells (MQWs) agreed more closely with Forward Voltage measurements.


2019 ◽  
Vol 9 (5) ◽  
pp. 871 ◽  
Author(s):  
Abu Islam ◽  
Dong-Soo Shim ◽  
Jong-In Shim

We investigate the differences in optoelectronic performances of InGaN/AlGaN multiple-quantum-well (MQW) near-ultraviolet light-emitting diodes by using samples with different indium compositions. Various macroscopic characterizations have been performed to show that the strain-induced piezoelectric field (FPZ), the crystal quality, and the internal quantum efficiency increase with the sample’s indium composition. This improved performance is owing to the carrier recombination at relatively defect-free indium-rich localized sites, caused by the local in-plane potential-energy fluctuation in MQWs. The potential-energy fluctuation in MQWs are considered to be originating from the combined effects of the inhomogeneous distribution of point defects, FPZ, and indium compositions.


2015 ◽  
Vol 23 (7) ◽  
pp. A337 ◽  
Author(s):  
Hung-Ming Chang ◽  
Wei-Chih Lai ◽  
Wei-Shou Chen ◽  
Shoou-Jinn Chang

2001 ◽  
Vol 40 (Part 2, No. 9A/B) ◽  
pp. L921-L924 ◽  
Author(s):  
Jian Ping Zhang ◽  
Vinod Adivarahan ◽  
Hong Mei Wang ◽  
Qhalid Fareed ◽  
Edmundas Kuokstis ◽  
...  

2019 ◽  
Vol 7 (22) ◽  
pp. 6534-6538 ◽  
Author(s):  
Shanshan Chen ◽  
Chenxiao Xu ◽  
Xinhua Pan ◽  
Haiping He ◽  
Jingyun Huang ◽  
...  

Dramatically reduced edge threading dislocations and a record IQE of 61% are obtained for ZnO/Zn0.9Mg0.1O MQWs by using GaN/Al2O3 as substrates.


Sign in / Sign up

Export Citation Format

Share Document