scholarly journals Mechanical Properties of Corrugated Carbon Fiber Plain Woven Fabrics for Flexible Wing Material

2005 ◽  
Vol 31 (6) ◽  
pp. 268-273 ◽  
Author(s):  
Tomohiro YOKOZEKI ◽  
Shinichi TAKEDA ◽  
Toshio OGASAWARA ◽  
Takashi ISHIKAWA
2021 ◽  
Vol 13 (4) ◽  
Author(s):  
Sushma D. Thorat ◽  
V. S. Mahajan

In many recent years the use of composite materials increases in many fields, for example agricultural uses, where these materials are characterized by good mechanical properties, tenacity and light weight. Among many other materials for the reinforcement of composites, technical fabrics are increasingly being used for the same purpose, especially from carbon fiber, which have good mechanical properties. During tensile stress these fabrics are elongated in the direction of tensile force, and at the same time they contract crosswise in relation to the action of the tensile force. In this Project the tensile properties of regular carbon fabrics and woven fabrics made from carbon fiber yarns were investigated. Static structural analysis of Regular carbon fabrics and woven fabrics base carbon fiber specimen will be done using ACP tool in ANSYS 19 software.


2020 ◽  
pp. 152808372096883
Author(s):  
Elif Yılmaz ◽  
Sevda Altaş

In this study, nitinol and steel wire core hybrid yarns were produced from wires having two different diameters and used as warp yarns to weave 3D woven fabrics in two different fabric constructions. The steel bars with two different diameters were placed into the gaps between fabric layers to create a hollow form after fabric production. The fabrics produced with cold-worked nitinol wire were exposed to heat treatments at high temperatures to provide them shape memory property according to data obtained from DSC analysis. Conventional textile fibers are not durable to these temperatures; for this reason, carbon fiber was used both as sheath material of hybrid yarns and additionally as warp and weft carbon fiber yarns. All yarn and fabric tests were carried out simultaneously to evaluate the mechanical properties of nitinol and steel wire core hybrid yarns, and wire-reinforced fabrics. Tensile tests were applied to all wire and hybrid yarn samples, DSC and DMA analyses were conducted for only heat-treated nitinol wires. Low-velocity impact, tensile and pull-out tests were applied to fabric samples. Reference fabrics with no wire were produced and evaluated by comparing with wire-reinforced samples to provide a point of comparison to the data from the mechanical properties of wire-reinforced 3D fabrics. The study's results were analyzed with regression analysis using the backward method, and the parameters such as wire type, wire diameter, and fabric gap width for optimum fabric production were determined. Data obtained from all mechanical tests demonstrate that fabric samples with steel wire, thinner wire, and narrow gaps have better results than others. The effect of wire thickness was also found the same for the nitinol wire. DMA analyses show that the thinner nitinol wire is better than, the thicker one. Finally, an innovative technique has been developed in this study to weave carbon fiber on a conventional automatic sample loom without fiber breakage by twisting PVA yarn around the wire core hybrid and twisted carbon fiber yarns.


2021 ◽  
pp. 002199832199161
Author(s):  
Mingrui Liu ◽  
Qiong Rao ◽  
Yingyu Wang ◽  
Xiongqi Peng

A new method of grafting multi-walled carbon nanotubes (MWCNTs) onto carbon fiber surface to improve the thermo-mechanical properties of woven carbon fabric reinforced composites was proposed. In this method, both carbon woven fabrics and MWCNTs were oxidized by sulfuric acid to generate carboxyl groups on their surfaces, respectively. Then silane coupling agent was used to react with the carboxyl groups to graft MWCNTs onto the carbon fiber surfaces of the woven fabric. The untreated, acid treated and MWCNTs grafted carbon woven fabrics were separately combined with polypropylene films to form composite plates by thermal-stamping. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were conducted to estimate the changes of element contents and functional groups on surfaces of carbon fibers and MWCNTs. Atomic force microscope was used to estimate the roughness of carbon fiber surfaces. Scanning electron microscopy, differential scanning calorimeter, dynamic mechanical thermal analysis and tensile tests were carried out to analyze the surface morphology, thermal, and mechanical properties of carbon fabrics and their composites. Testing results showed that MWCNTs could be successfully grafted onto the carbon fibers by using silane as an intermediate bridge. Compared with the untreated and acid treated composites, the in-plane shearing stiffness and fracture strength of the composites were increased significantly by MWCNTs grafting. In terms of thermal properties, acid treatment and MWCNTs grafting have little effect on melting point of composites. MWCNTs can promote the recrystallization process of the PP and reduce the numbers of imperfect crystals. As for thermo-mechanical properties, acid treatment deteriorated the bending storage modulus of the composite, while MWCNTs grafting could compensate it.


2021 ◽  
Vol 11 (7) ◽  
pp. 354
Author(s):  
Waleed Ahmed ◽  
Essam Zaneldin ◽  
Amged Al Hassan

With the rapid growth in the manufacturing industry and increased urbanization, higher amounts of composite material waste are being produced, causing severe threats to the environment. These environmental concerns, coupled with the fact that undergraduate students typically have minimal experience in research, have initiated the need at the UAE University to promote research among undergraduate students, leading to the development of a summer undergraduate research program. In this study, a recycling methodology is presented to test lab-fabricated Carbon-Fiber-Reinforced Polymer (CFRP) for potential applications in industrial composite waste. The work was conducted by two groups of undergraduate students at the UAE University. The methodology involved the chemical dissolution of the composite waste, followed by compression molding and adequate heat treatment for rapid curing of CFRP. Subsequently, the CFRP samples were divided into three groups based on their geometrical distinctions. The mechanical properties (i.e., modulus of elasticity and compressive strength) were determined through material testing, and the results were then compared with steel for prompt reference. The results revealed that the values of mechanical properties range from 2 to 4.3 GPa for the modulus of elasticity and from 203.7 to 301.5 MPa for the compressive strength. These values are considered competitive and optimal, and as such, carbon fiber waste can be used as an alternate material for various structural applications. The inconsistencies in the values are due to discrepancies in the procedure as a result of the lack of specialized equipment for handling CFRP waste material. The study concluded that the properties of CFRP composite prepreg scrap tend to be reusable instead of disposable. Despite the meager experimental discrepancies, test values and mechanical properties indicate that CFRP composite can be successfully used as a material for nonstructural applications.


2021 ◽  
pp. 096739112110239
Author(s):  
Sheedev Antony ◽  
Abel Cherouat ◽  
Guillaume Montay

Nowadays natural fibre composites have gained great significance as reinforcements in polymer matrix composites. Composite material based on a polymer matrix reinforced with natural fibres is extensively used in industry due to their biodegradability, recyclability, low density and high specific properties. A study has been carried out here to investigate the fibre volume fraction effect of hemp fibre woven fabrics/PolyPropylene (PP) composite laminates on the tensile properties and impact hammer impact test. Initially, composite sheets were fabricated by the thermal-compression process with desired number of fabric layers to obtain composite laminates with different fibre volume fraction. Uniaxial, shear and biaxial tensile tests were performed and mechanical properties were calculated. Impact hammer test was also carried out to estimate the frequency and damping parameters of stratified composite plates. Scanning Electron Microscope (SEM) analysis was performed to observe the matrix and fibre constituent defects. Hemp fabrics/PP composite laminates exhibits viscoelastic behaviour and as the fibre volume fraction increases, the viscoelastic behaviour decreases to elastic behaviour. Due to this, the tensile strength increases as the fibre content increases. On the other hand, the natural frequency increases and damping ratio decrease as the fibre volume fraction increases.


Author(s):  
Antao Deng ◽  
Bin Ji ◽  
Xiang Zhou

A new geometric design method for foldcores based on the generalized Resch patterns that allow face-to-face bonding interfaces between the core and the skins is proposed. Based on the geometric design method, a systematic numerical investigation on the quasi-static mechanical properties of the generalized Resch-based foldcores made of carbon fiber-reinforced plastic (CFRP) woven fabrics subjected to compression and shear loads is performed using the finite element method that is validated by experiments. The relationships between the mechanical properties and various geometric parameters as well as laminate thickness of the generalized Resch-based CFRP foldcores are revealed. Additionally, the mechanical properties of the generalized Resch-based CFRP foldcore are compared to those of the standard Resch-based, Miura-based foldcore, the honeycomb core, and the aluminum counterpart. It is found that the generalized Resch-based CFRP foldcore performs more stably than the honeycomb core under compression and has higher compressive and shear stiffnesses than the standard Resch-based and Miura-based foldcores and absorbs as nearly twice energy under compression as the Miura-based foldcore does. When compared with the aluminum counterpart, the CFRP model has higher weight-specific stiffness and strength but lower energy absorption capacity under shearing. The results presented in this paper can serve as the useful guideline for the design of the generalized Resch-based composite foldcore sandwich structures for various performance goals.


Sign in / Sign up

Export Citation Format

Share Document