CFD ANALYSIS OF A NEW ACTIVE FLOW CONTROL METHOD FOR WIND TURBINE AIRFOILS USING A PADDLE WHEEL INSIDE THE SPLIT OF AIRFOIL

2021 ◽  
Vol 26 (2) ◽  
pp. 69-76
Author(s):  
Mohammad Moshfeghi ◽  
Amir Maleki ◽  
Morteza Ramezani ◽  
Nahmkeon Hur
2021 ◽  
Author(s):  
Kewei Xu ◽  
Gecheng Zha

Abstract This paper applies Co-flow Jet (CFJ) active flow control airfoil to a NREL horizontal axis wind turbine for power output improvement. CFJ is a zero-net-mass-flux active flow control method that dramatically increases airfoil lift coefficient and suppresses flow separation at a low energy expenditure. The 3D Reynolds Averaged Navier-Stokes (RANS) equations with one-equation Spalart-Allmaras (SA) turbulence model are solved to simulate the 3D flows of the wind turbines. The baseline wind turbine is the NREL 10.06m diameter phase VI wind turbine and is modified to a CFJ blade by implementing CFJ along the span. The baseline wind turbine performance is validated with the experiment at three wind speeds, 7m/s, 15m/s, and 25m/s. The predicted blade surface pressure distributions and power output agree well with the experimental measurements. The study indicates that the CFJ can enhance the power output at the condition where angle of attack is increased to the level that conventional wind turbine is stalled. At the speed of 7m/s that the NREL turbine is designed to achieve the optimum efficiency at the pitch angle of 3°, the CFJ turbine does not increase the power output. When the pitch angle is reduced by 13° to −10°, the baseline wind turbine is stalled and generates negative power output at 7m/s. But the CFJ wind turbine increases the power output by 12.3% assuming CFJ fan efficiency of 80% at the same wind speed. This is an effective method to extract more power from the wind at all speeds. It is particularly useful at low speeds to decrease cut-in speed and increase power output without exceeding the structure limit. At the freestream velocity of 15m/s and the CFJ momentum coefficient Cμ of 0.23, the net power output is increased by 207.7% assuming the CFJ fan efficiency of 80%, compared to the baseline wind turbine due to the removal of flow separation. The CFJ wind turbine appears to open a door to a new area of wind turbine efficiency improvement and adaptive control for optimal loading.


2020 ◽  
pp. 0309524X2096139
Author(s):  
Fangrui Shi ◽  
Yingqiao Xu ◽  
Xiaojing Sun

In this paper, a three-dimensional numerical simulation of the aerodynamic performance of a horizontal axis wind turbine (HAWT) whose blades are equipped with a new active flow control concept called Co-Flowing Jet (CFJ) is carried out. Numerical results show that the use of CFJ over the blade suction surface can effectively delay flow separation, thus improving the net torque and power output of HAWT. Besides, this increment in the net power produced by the turbine is considerably higher than the power consumed by the CFJ. Thus, the overall efficiency of the HAWT can be greatly increased. Furthermore, influences of different CFJ operating parameters including location of injection port, jet momentum coefficient and slot length on the performance enhancement of a HAWT are also systematically studied and the optimal combination of these parameters to obtain the best possible turbine efficiency throughout a range of different wind speeds has been identified.


Author(s):  
Daniel Nerger ◽  
Horst Saathoff ◽  
Rolf Radespiel ◽  
Volker Gu¨mmer ◽  
Carsten Clemen

The following paper describes an experimental investigation of a highly loaded stator cascade with a pitch to chord ratio of t/l = 0.6. Experiments without as well as with active flow control by means of endwall and suction side blowing were conducted. Five-hole-probe measurements in pitchwise and spanwise direction as well as endwall oil flow visualizations were carried out in order to determine the performance of the cascade and to analyze the flow phenomena occuring. To quantify the effectivity of the active flow control method, taking the additional energy input into account, corrected losses and an efficiency, which relates the difference of flow power deficit with and without active flow control to the flow power of the blowing jet itself, were evaluated. Even though an increase of static pressure rise could be achieved, a decrease of the total pressure losses was possible for a few operating points only.


Wind Energy ◽  
2014 ◽  
Vol 18 (5) ◽  
pp. 909-923 ◽  
Author(s):  
Alexander Wolf ◽  
Thorsten Lutz ◽  
Werner Würz ◽  
Ewald Krämer ◽  
Oksana Stalnov ◽  
...  

2012 ◽  
Vol 134 (04) ◽  
pp. 51-51 ◽  
Author(s):  
G. Pechlivanoglou ◽  
C.N. Nayeri ◽  
C.O. Paschereit

This article describes the performance optimization of wind turbine rotors with active flow control. The active Gurney flap concept was tested in the wind tunnel under dynamic AoA variations to simulate unsteady inflow conditions. A high-deflection micro flap was actuated by four digital electric servos with a maximum deflection rate of 360°/sec. A custom code was created to allow dynamic AoA variations of the test wing with simultaneous dynamic force measurements. During the dynamic investigations, various control strategies were tested, starting from standard PID controllers with semi-empirical parameter tuning models to Direct Inverse Controllers with neural network tuning strategies and pure self-learning neural network controllers. The results of the closed-loop measurements using the manually tuned PID controller showed a reduction potential for the dynamic lift loads in the range of 70% as well as a stable controller behavior. The Direct Inverse Controller not only showed a load reduction of 36.8%, but also significant improvement potential with respect to its fine-tuning.


2012 ◽  
Vol 134 (08) ◽  
pp. 55-55 ◽  
Author(s):  
G. Pechlivanoglou ◽  
C.N. Nayeri ◽  
C.O. Paschereit

This article discusses the performance optimization of wind turbine rotors with active flow control. An extensive multi-parameter investigation with a thorough matrix-grading system was performed to identify the most suitable solution for industrial quality, short/mid-term implementation on actual utility scale wind turbines. A very wide selection of aerodynamic flow control solutions was analyzed based on extensive multi-disciplinary literature review and through aerodynamic and aeroelastic simulations. It is suggested that the trailing edge devices have the most favorable performance in the field of system integration and mechanical design performance. Compliant structures like the flexible flap keep the number of moving parts to a minimum while maintaining high performance and manufacturing simplicity. The use of flexible and elastic materials based on polymers or rubber material improves the lightning strike resistance of these solutions and allows for low-cost large-scale production. The actuator principle, sensitivity, and reliability are decisive parameters, and pneumatic actuators seem to strike a good balance between performance, cost, and reliability.


Author(s):  
Qinghe Meng ◽  
Shaowen Chen ◽  
Weihang Li ◽  
Songtao Wang

Sweeping Jet Actuator (SJA) was introduced as a potential active flow control method for reducing three-dimension (3D) flow separations in a compressor cascade. Unlike some other actuators, SJA needs no valves or moving parts to convert its steady compressed air source into sweeping jets that oscillates from side to side through the millimeter-sized outlet nozzle. The rather simple and small structure makes it possible to place SJA into the blades. In this study, a 3D numerical simulation using unsteady RANS codes was conducted to investigate the effects of SJA on the flow pattern and the aerodynamic loss mechanism in a compressor cascade. Firstly, the reliability of a commercial Computational Fluid Dynamic (CFD) code was validated and the computed results showed good agreements with experimental data from the literature. Secondly, some possible affecting factors, such as actuating pressure, position of SJA exit and jet skew angle, were analyzed and discussed in detail. Moreover, the effectiveness of active flow control under different locations and stream directions of SJA was studied for obtaining a further understanding of the mechanism of SJA for controlling flow separations. In addition, the generation and interaction of internal secondary flows in the compressor cascade were also investigated, and the oscillating jet process of SJA was presented. The numerical results indicate that using SJA delays effectively the corner flow separation, thus decreases the aerodynamic loss of the compressor cascade. For the optimum scheme within the present research, the reduction of overall time-averaged total pressure loss coefficient achieves about 5.6% compared with the original case without SJA. The streamwise position of SJA has a more remarkable influence in improving performance than the other SJA schemes. The considerable improvements of flow separation in the corner region is considered to be one of the main reasons in overall performance increase.


Sign in / Sign up

Export Citation Format

Share Document