scholarly journals Continuous Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation Systems Under Time-Varying Disturbances

2016 ◽  
Vol 16 (4) ◽  
pp. 1324-1335 ◽  
Author(s):  
Huiming Wang ◽  
Shihua Li ◽  
Jun Yang ◽  
XingPeng Zhou
2018 ◽  
Vol 8 (12) ◽  
pp. 2491 ◽  
Author(s):  
Junbing Qian ◽  
Chuankun Ji ◽  
Nan Pan ◽  
Jing Wu

Due to advantages such as high speed, high accuracy, low maintenance and high reliability, permanent magnet synchronous motor (PMSM) servo systems have been employed in many fields. In some cases, for example, speed fluctuations caused by load mutation would restrict the control stability, thereby limiting the usefulness of PMSM in high-precision applications. The speed regulation problem of PMSM servo control systems is discussed in this paper. A sliding mode disturbance control is developed in the vector control system to improve tracking performance of the PMSM system in order to suppress the speed fluctuations. The integration of sliding mode control and the proportional plus integral (PI) control can improve the performance of the closed-loop system and attenuate disturbances to a great extent. The proposed method can effectively improve the robustness and response speed of the system. Simulation and experimental analyses are conducted to demonstrate the superior properties of the proposed control method.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Huan Zhang ◽  
Qunying Liu ◽  
Jiashu Zhang ◽  
Shuheng Chen ◽  
Changhua Zhang

To reduce the chattering issue and improve the dynamic tracking performance of the speed regulation of the permanent magnet synchronous motor (PMSM) system, the sliding mode control (SMC) with an enhanced exponential reaching law (EERL) is proposed in this paper. Compared to the SMC with conventional reaching law (CRL), the proposed SMC based on the EERL makes the convergence rate be associated with the change of the system state variable. In order to implement the minimum resource utilization of the embedded processor while guaranteeing the performance of the system, the event triggered strategy is developed for SMC, which possesses the excellent robustness and saves the energy cost. The stability of the event triggered SMC control law is proved by the Lyapunov function and the minimum control execution time interval is also derived. Finally, the effectiveness of the proposed EERL and the satisfactory performance of the event triggered SMC are demonstrated by the simulation results.


Author(s):  
Peikun Zhu ◽  
Yong Chen ◽  
Meng Li

Aiming at the parameter uncertainty and load torque disturbance of permanent magnet synchronous motor system, a terminal sliding mode control algorithm for permanent magnet synchronous motor based on the reaching law is proposed. First, a sliding mode control algorithm for sliding mode reaching law is proposed, which can dynamically adapt to the changes in system state. Second, a sliding mode disturbance observer is designed to estimate the lumped disturbance in real time and to compensate the controller for disturbance. On this basis, an online identification method based on disturbance observer for viscous friction coefficient and moment of inertia is used to reduce the influence of parameter uncertainty on the control system. Simulation and experimental results show the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document