scholarly journals Evaluation of renaturation methods for industrial obtaining of recombinant proteins from Escherichia coli inclusion bodies in biologically active form

2004 ◽  
Vol 20 (3) ◽  
pp. 182-192 ◽  
Author(s):  
P. V. Gilchuk
2016 ◽  
Vol 62 (3) ◽  
pp. 377-382
Author(s):  
David S Waugh

A common problem encountered during the production of recombinant proteins, particularly in bacteria, is their tendency to accumulate in an insoluble and inactive form (i.e., as inclusion bodies). Although sometimes it is possible to convert the aggregated material into native, biologically active protein, this is a time-consuming, costly, and uncertain undertaking. Consequently, a general means of circumventing the formation of inclusion bodies is highly desirable. During the 1990s, it was serendipitously discovered that certain highly soluble proteins have the ability to enhance the solubility of their fusion partners, thereby preventing them from forming insoluble aggregates. In the ensuing years, Escherichia coli maltose-binding protein (MBP) has emerged as one of the most effective solubility enhancers. Moreover, once rendered soluble by fusion to MBP, many proteins are able to fold into their biologically active conformations. This brief review article focuses on our current understanding of what makes MBP such an effective solubility enhancer and how it facilitates the proper folding of its fusion partners.


1999 ◽  
Vol 64 (8) ◽  
pp. 1348-1356 ◽  
Author(s):  
Michaela Rumlová-Kliková ◽  
Iva Pichová ◽  
Eric Hunter ◽  
Tomáš Ruml

It has been generally accepted that inclusion bodies (IBs) formed in Escherichia coli consist of non-biologically active aggregated proteins, which are stabilized by non-productive interactions. We show here that bacterial expression of a retroviral capsid polyprotein results in formation of insoluble IBs that contain fully assembled viral particles connected with amorphous material. The efficiency of IBs formation and capsid assembly was not significantly affected by changes in induction temperature, pH of cultivation medium or the level of expression.


2019 ◽  
Vol 3 (2) ◽  
pp. 298-305 ◽  
Author(s):  
Ludmilla Dela Coletta Troiano Araujo ◽  
Daniel Ernesto Rodriguez-Fernández ◽  
Márcia Wibrantz ◽  
Susan Grace Karp ◽  
Gilberto Delinski Junior ◽  
...  

2020 ◽  
Vol 27 ◽  
Author(s):  
Mohammad Sadegh Hashemzadeh ◽  
Mozafar Mohammadi ◽  
Hadi Esmaeili Gouvarchin Ghaleh ◽  
Mojtaba Sharti ◽  
Ali Choopani ◽  
...  

: Escherichia coli has been most widely used for production of the recombinant proteins. Over-expression of the recombinant proteins is the mainspring of the inclusion bodies formation. The refolding of these proteins into bioactive forms is cumbersome and partly time-consuming. In the present study, we reviewed and discussed most issues regarding the recovery of "classical inclusion bodies" by focusing on our previous experiences. Performing proper methods of expression, solubilization, refolding and final purification of these proteins, would make it possible to recover higher amounts of pro-teins into the native form with appropriate conformation. Generally, providing mild conditions and proper refolding buffers, would lead to recover more than 40% of inclusion bodies into bioactive and native conformation.


2020 ◽  
Author(s):  
Elena Krachmarova ◽  
Ivan Ivanov ◽  
Genoveva Nacheva

Abstract BackgroundInclusion bodies (IBs) are protein aggregates in recombinant bacterial cells containing mainly the target recombinant protein. Although it has been shown that IBs contain functional proteins along with protein aggregates, their direct application as pharmaceuticals is hindered by their heterogeneity and hazardous contaminants with bacterial origin. Therefore, together with the production of soluble species, IBs remain the main source for manufacture of recombinant proteins with medical application. The quality and composition of the IBs affect the refolding yield and further purification of the recombinant protein. The knowledge whether nucleic acids are genuine components or concomitant impurities of the IBs is a prerequisite for the understanding of the IBs formation and for development of optimized protocols for recombinant protein refolding and purification. IBs isolated from Escherichia coli overexpressing human interferon-gamma (hIFNγ), a protein with therapeutic application, were used as a model. ResultsIBs were isolated from Escherichia coli LE392 cells transformed with a hIFNγ expressing plasmid under standard conditions and further purified by centrifugation on a sucrose cushion, followed by several steps of sonication and washings with non-denaturing concentrations of urea. The efficiency of the purification was estimated by SDS-PAGE gel electrophoresis and parallel microbiological testing for the presence of residual intact bacteria. Phenol/chloroform extraction showed that the highly purified IBs contain both DNA and RNA. The latter were studied by UV spectroscopy and agarose gel electrophoresis combined with enzymatic treatment and hybridization. DNA was observed as a diffuse fraction mainly in the range of 250 to 1000 bp. RNA isolated by TRIzol® also demonstrated a substantial molecular heterogeneity. Hybridization with 32P-labelled oligonucleotides showed that the IBs contain rRNA and are enriched of hIFNγ mRNA.ConclusionsThe results presented in this study indicate that the nucleic acids might be intrinsic components rather than co-precipitated impurities in the IBs. We assume that the nucleic acids are active participants in the aggregation of recombinant proteins and formation of the IBs that originate from the transcription and translation machinery of the microbial cell factory. Further studies are needed to ascertain this notion.


2020 ◽  
Author(s):  
Elena Krachmarova ◽  
Ivan Ivanov ◽  
Genoveva Nacheva

Abstract Background Inclusion bodies (IBs) are protein aggregates in recombinant bacterial cells containing mainly the target recombinant protein. Although it has been shown that IBs contain functional proteins along with protein aggregates, their direct application as pharmaceuticals is hindered by their heterogeneity and hazardous contaminants with bacterial origin. Therefore, together with the production of soluble species, IBs remain the main source for manufacture of recombinant proteins with medical application. The quality and composition of the IBs affect the refolding yield and further purification of the recombinant protein. The knowledge whether nucleic acids are genuine components or concomitant impurities of the IBs is a prerequisite for the understanding of the IBs formation and for development of optimized protocols for recombinant protein refolding and purification. IBs isolated from Escherichia coli overexpressing human interferon-gamma (hIFNγ), a protein with therapeutic application, were used as a model. Results IBs were isolated from Escherichia coli LE392 cells transformed with a hIFNγ expressing plasmid under standard conditions and further purified by centrifugation on a sucrose cushion, followed by several steps of sonication and washings with non-denaturing concentrations of urea. The efficiency of the purification was estimated by SDS-PAGE gel electrophoresis and parallel microbiological testing for the presence of residual intact bacteria. Phenol/chloroform extraction showed that the highly purified IBs contain both DNA and RNA. The latter were studied by UV spectroscopy and agarose gel electrophoresis combined with enzymatic treatment and hybridization. DNA was observed as a diffuse fraction mainly in the range of 250 to 1000 bp. RNA isolated by TRIzol® also demonstrated a substantial molecular heterogeneity. Hybridization with 32 P-labelled oligonucleotides showed that the IBs contain rRNA and are enriched of hIFNγ mRNA. Conclusions The results presented in this study indicate that the nucleic acids are intrinsic components rather than co-precipitated impurities in the IBs. We assume that the nucleic acids are active participants in the aggregation of recombinant proteins and formation of the IBs that originate from the transcription and translation machinery of the microbial cell factory.


Sign in / Sign up

Export Citation Format

Share Document