scholarly journals Plant biomass increase: recent advances in genetic engineering

2013 ◽  
Vol 29 (6) ◽  
pp. 443-453 ◽  
Author(s):  
L. O. Sakhno
2018 ◽  
Vol 84 (18) ◽  
Author(s):  
Qi-Peng He ◽  
Shuai Zhao ◽  
Jiu-Xiang Wang ◽  
Cheng-Xi Li ◽  
Yu-Si Yan ◽  
...  

ABSTRACTSoil fungi produce a wide range of chemical compounds and enzymes with potential for applications in medicine and biotechnology. Cellular processes in soil fungi are highly dependent on the regulation under environmentally induced stress, but most of the underlying mechanisms remain unclear. Previous work identified a key GATA-type transcription factor,Penicillium oxalicumNsdD (PoxNsdD; also called POX08415), that regulates the expression of cellulase and xylanase genes inP. oxalicum. PoxNsdD shares 57 to 64% identity with the key activator NsdD, involved in asexual development inAspergillus. In the present study, the regulatory roles of PoxNsdD inP. oxalicumwere further explored. Comparative transcriptomic profiling revealed that PoxNsdD regulates major genes involved in starch, cellulose, and hemicellulose degradation, as well as conidiation and pigment biosynthesis. Subsequent experiments confirmed that a ΔPoxNsdDstrain lost 43.9 to 78.8% of starch-digesting enzyme activity when grown on soluble corn starch, and it produced 54.9 to 146.0% more conidia than the ΔPoxKu70parental strain. During cultivation, ΔPoxNsdDcultures changed color, from pale orange to brick red, while the ΔPoxKu70cultures remained bluish white. Real-time quantitative reverse transcription-PCR showed thatPoxNsdDdynamically regulated the expression of a glucoamylase gene (POX01356/Amy15A), an α-amylase gene (POX09352/Amy13A), and a regulatory gene (POX03890/amyR), as well as a polyketide synthase gene (POX01430/alb1/wA) for yellow pigment biosynthesis and a conidiation-regulated gene (POX06534/brlA). Moreover,in vitrobinding experiments showed that PoxNsdD bound the promoter regions of the above-described genes. This work provides novel insights into the regulatory mechanisms of fungal cellular processes and may assist in genetic engineering ofP.oxalicumfor potential industrial and medical applications.IMPORTANCEMost filamentous fungi produce a vast number of extracellular enzymes that are used commercially for biorefineries of plant biomass to produce biofuels and value-added chemicals, which might promote the transition to a more environmentally friendly economy. The expression of these extracellular enzyme genes is tightly controlled at the transcriptional level, which limits their yields. Hitherto our understanding of the regulation of expression of plant biomass-degrading enzyme genes in filamentous fungi has been rather limited. In the present study, regulatory roles of a key regulator, PoxNsdD, were further explored in the soil fungusPenicillium oxalicum, contributing to the understanding of gene regulation in filamentous fungi and revealing the biotechnological potential ofP.oxalicumvia genetic engineering.


1992 ◽  
Vol 40 (6) ◽  
pp. 765 ◽  
Author(s):  
JF Hutchinson ◽  
V Kaul ◽  
G Maheswaran ◽  
JR Moran ◽  
MW Graham ◽  
...  

Floricultural crops are an ideal target for improvement using biotechnology. While a range of techniques such as somaclonal variation, embryo and haploid culture has been successfully used, they have yet to result in the release of a new cultivar that has a major impact on the industry. Genetic engineering, more than any other technique, offers the most potential because it is possible to transfer a new gene, conferring a single trait, to an existing cultivar. Recent advances in the regeneration of adventitious shoots and somatic embryos, and Agrobacterium-mediated transformation of the major flower crops (carnation, chrysanthemum, rose and gerbera) are reviewed. To date, all four species can be regenerated and transformed but with varying degrees of success. Notable advances have been made with carnation and chrysanthemum, where genes of potential importance have been transferred and expressed.


Author(s):  
Jerolen Naidoo ◽  
Ezio Fok ◽  
Lichelle Grobler ◽  
Reitumetse Molaoa ◽  
Zandile Nxumalo ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Valeria Ellena ◽  
Michael Sauer ◽  
Matthias G. Steiger

AbstractAsexuality was considered to be a common feature of a large part of fungi, including those of the genus Aspergillus. However, recent advances and the available genomic and genetic engineering technologies allowed to gather more and more indications of a hidden sexuality in fungi previously considered asexual. In parallel, the acquired knowledge of the most suitable conditions for crossings was shown to be crucial to effectively promote sexual reproduction in the laboratory. These discoveries not only have consequences on our knowledge of the biological processes ongoing in nature, questioning if truly asexual fungal species exist, but they also have important implications on other research areas. For instance, the presence of sexuality in certain fungi can have effects on their pathogenicity or on shaping the ecosystem that they normally colonize. For these reasons, further investigations of the sexual potential of Aspergillus species, such as the industrially important A. niger, will be carried on.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Qian Liu ◽  
Yongli Zhang ◽  
Fangya Li ◽  
Jingen Li ◽  
Wenliang Sun ◽  
...  

Abstract Background Thermophilic filamentous fungus Myceliophthora thermophila has great capacity for biomass degradation and is an attractive system for direct production of enzymes and chemicals from plant biomass. Its industrial importance inspired us to develop genome editing tools to speed up the genetic engineering of this fungus. First-generation CRISPR–Cas9 technology was developed in 2017 and, since then, some progress has been made in thermophilic fungi genetic engineering, but a number of limitations remain. They include the need for complex independent expression cassettes for targeting multiplex genomic loci and the limited number of available selectable marker genes. Results In this study, we developed an Acidaminococcus sp. Cas12a-based CRISPR system for efficient multiplex genome editing, using a single-array approach in M. thermophila. These CRISPR–Cas12a cassettes worked well for simultaneous multiple gene deletions/insertions. We also developed a new simple approach for marker recycling that relied on the novel cleavage activity of the CRISPR–Cas12a system to make DNA breaks in selected markers. We demonstrated its performance by targeting nine genes involved in the cellulase production pathway in M. thermophila via three transformation rounds, using two selectable markers neo and bar. We obtained the nonuple mutant M9 in which protein productivity and lignocellulase activity were 9.0- and 18.5-fold higher than in the wild type. We conducted a parallel investigation using our transient CRISPR–Cas9 system and found the two technologies were complementary. Together we called them CRISPR–Cas-assisted marker recycling technology (Camr technology). Conclusions Our study described new approaches (Camr technology) that allow easy and efficient marker recycling and iterative stacking of traits in the same thermophilic fungus strain either, using the newly established CRISPR–Cas12a system or the established CRISPR–Cas9 system. This Camr technology will be a versatile and efficient tool for engineering, theoretically, an unlimited number of genes in fungi. We expect this advance to accelerate biotechnology-oriented engineering processes in fungi.


Sign in / Sign up

Export Citation Format

Share Document