scholarly journals Genetic transformation of promising genotypes of winter bread wheat by in planta method

2021 ◽  
Vol 28 ◽  
pp. 106-111
Author(s):  
L. V. Slivka ◽  
O. V. Dubrovna

Aim. Optimization of conditions and genetic transformation of new promising genotypes of winter bread wheat (Triticum aestivum L.) by in planta method. Methods. Agrobacterium-mediated transformation by the in planta method using strain AGL0 and vector construct pBi-OAT. Results. The influence of air temperature, optical density of cells of agrobacterial suspension, inoculation day and composition of inoculation medium on the frequency of obtaining transgenic plants of new promising genotypes of winter wheat was studied. The dependence of the frequency of obtaining transgenic plants on environmental conditions, in particular temperature, has been established. It was found that the temperature regime of 20-22 °C provided the largest number (4.4%) of wheat transformants, and when the temperature is reduced to 16-18 °C there is a decrease in the efficiency of T-DNA transfer into the plant genome and the lowest frequency of transformation is observed. Conclusions. The largest number of transformants was obtained using a inoculation medium without sucrose, the optical density of cells of the agrobacterial suspension of 0.4 op.od. and inoculation on the third day after castration of ears. Keywords: Triticum aestivum L., Agrobacterium-mediated transformation, ornithine-δ-aminotransferase gene.

2021 ◽  
Vol 28 ◽  
pp. 66-71
Author(s):  
O. V. Dubrovna ◽  
L. V. Slivka

Aim. Optimization of conditions for genetic transformation of new promising genotypes of winter bread wheat (T. aestivum L.) by in planta method. Methods. Agrobacterium-mediated transformation by in planta method using the strain AGL0 and vector construct pBi2E. Results. The influence of air temperature, optical density of cells of agrobacterial suspension, inoculation day and composition of inoculation medium on the frequency of obtaining transgenic plants of new winter wheat genotypes was studied. The dependence of the frequency obtaining of transgenic plants from environmental conditions, in particular temperature, has been established. It was found that the temperature regime of 20-22°C provided the largest number (4.8%) of wheat transformants, and when the temperature is reduced to 16-18°C there is a decrease in the efficiency of T-DNA transfer into the plant genome and the lowest frequency of transformation (0.7%). Conclusions. The largest number of transformants was obtained using a inoculation medium without sucrose, the optical density of cells of the agrobacterial suspension of 0.6 op.od. and inoculation on the third day after castration of ears. Keywords: T. aestivum, Agrobacterium-mediated transformation in planta, optimization of conditions.


2018 ◽  
Vol 22 ◽  
pp. 293-298
Author(s):  
S. I. Mykhalska ◽  
A. G. Komisarenko ◽  
V. M. Kurchii ◽  
O. M. Tishchenko

Aim. To optimize the agrobacterium-mediated method of winter wheat transformation (Triticum aestivum L.); to select the conditions and period of inoculation to effectively transfer the genes during pollination. Methods. Agrobacterium-mediated in planta genetic transformation of winter wheat (Triticum aestivum L.) during pollination. Results. The conditions for agrobacterium-mediated transformation method of winter wheat during natural (frequency pollination was 1 %) and non-natural (frequency pollination was 4 %) pollination were defined. Conclusions. The possibility of integrating transgenes into the genome of winter wheat plants by the method of Agrobacterium-mediated transformation in planta in the process of forced and natural pollination is demonstrated. It is found that the transformation efficiency to a large extent depends on the plant genotype and the method of carrying out the transformation procedure. The selection of transgenic plants under water deficit conditions allowed to identify the plants with functional transgene. The signs of functioning transgene have been remaining in the next generation of genetically modified winter wheat. Keywords: Triticum aestivum L., Agrobacterium-mediated transformation in planta, transgenic plants, seeds.


2018 ◽  
Vol 22 ◽  
pp. 222-227
Author(s):  
O. M. Honcharuk ◽  
O. V. Dubrovna

Aim. Receiving of genetically modified plants of bread wheat with heterologous ornithine‑δ‑aminotransferase gene. Methods. Agrobacterium-mediated transformation of callus cultures in vitro, PCR-analysis. Results. By Agrobacterium-mediated transformation of the morphogenic calluses of bread wheat (Triticum aestivum L.) using the AGLO strain containing the binary vector pBi-OAT with the target ornithine-δ-aminotransferase (oat) and selective neomycinphosphotransferase II (nptII), transgenic plants-regenerators have been obtained. Conclusions. As a result of the genetic transformation of Zimoyarka variety, 12 wheat regenerants were obtained in the genome which revealed a complete integration of the genetic construct containing the oat and nptII transgenes. Keywords: Triticum aestivum L., Agrobacterium-mediated transformation, ornithine‑δ‑aminotransferase gene, PCR-analysis.


2020 ◽  
Author(s):  
N.S. LYSENKO ◽  
◽  
V.A. LOSEVA ◽  

This publication presents the results of a field assessment of 225 winter bread wheat accessions from the VIR collection for their winter hardiness in the environments of the Northwestern (Town of Pushkin, 2007/2008, 2008/2009 and 2013/2014) and Central Black Earth (Yekaterinino Settlem., 2007/2008 and 2008/2009) Regions of the Russian Federation. The tested accessions included landraces and old improved varieties, earlier identified as sources of winter hardiness, as well as modern improved cultivars and lines, added to the VIR collection from 1990 through 2006. For reference purposes, along with the wintering data, information on biological and agronomic traits is given for the tested accessions. The presented data will be of interest to plant breeders and other experts working with winter bread wheat.


2021 ◽  
Vol 273 ◽  
pp. 01027
Author(s):  
Оlesya Nekrasova ◽  
Nina Kravchenko ◽  
Dmitry Marchenko ◽  
Evgeny Nekrasov

The purpose of the study was to estimate the effect of sunflower and pea on the amount of productivity, protein and gluten percentage in grain. The objects of the study were 13 winter bread wheat varieties (Triticum aestivum L.) developed by the Agricultural Research Center “Donskoy”. The study was carried out in 2018-2020 on the fields of the department of winter wheat breeding and seed production. The forecrops were peas and sunflower. The study results showed that the varieties ‘Volny Don’ (6.1 t / ha), ‘Krasa Dona’ (6.1 t / ha) and ‘Lidiya’ (6.0 t / ha), when sown after peas, gave the largest yields. The varieties ‘Volny Don’ (4.9 t / ha) and ‘Polina’ (4.8 t / ha) which were sown after sunflower, showed the best productivity. The analysis of qualitative indicators established that the maximum percentage of protein and gluten in grain was identified in the varieties ‘Podarok Krymu’ (16.3%; 28.3%) and ‘Volnitsa’ (16.1%; 28.5%), which were sown after peas; and the same varieties showed good results (‘Podarok Krymu’ (16.2%; 27.4%) and ‘Volnitsa’ (15.7%; 27.8%)), when sown after sunflower.


2008 ◽  
Vol 44 (2) ◽  
pp. 171-179 ◽  
Author(s):  
V. A. Pukhalskiy ◽  
E. N. Bilinskaya ◽  
S. P. Martynov ◽  
T. V. Dobrotvorskaya ◽  
G. A. Obolenkova

Sign in / Sign up

Export Citation Format

Share Document