scholarly journals The Cuntz-Pimsner extension and mapping cone exact sequences

2019 ◽  
Vol 125 (2) ◽  
pp. 291-319 ◽  
Author(s):  
Francesca Arici ◽  
Adam Rennie

For Cuntz-Pimsner algebras of bi-Hilbertian bimodules with finite Jones-Watatani index satisfying some side conditions, we give an explicit isomorphism between the $K$-theory exact sequences of the mapping cone of the inclusion of the coefficient algebra into a Cuntz-Pimsner algebra, and the Cuntz-Pimsner exact sequence. In the process we extend some results by the second author and collaborators from finite projective bimodules to certain finite index bimodules, and also clarify some aspects of Pimsner's `extension of scalars' construction.

1973 ◽  
Vol 49 ◽  
pp. 21-51 ◽  
Author(s):  
Yôichi Miyashita

The purpose of this paper is to generalize the seven terms exact sequence given by Chase, Harrison and Rosenberg [8]. Our work was motivated by Kanzaki [16] and, of course, [8], [9]. The main theorem holds for any generalized crossed product, which is a more general one than that in Kanzaki [16]. In §1, we define a group P(A/B) for any ring extension A/B, and prove some preliminary exact sequences. In §2, we fix a group homomorphism J from a group G to the group of all invertible two-sided B-submodules of A.


2012 ◽  
Vol 64 (2) ◽  
pp. 368-408 ◽  
Author(s):  
Ralf Meyer ◽  
Ryszard Nest

AbstractWe define the filtrated K-theory of a C*-algebra over a finite topological spaceXand explain how to construct a spectral sequence that computes the bivariant Kasparov theory overXin terms of filtrated K-theory.For finite spaces with a totally ordered lattice of open subsets, this spectral sequence becomes an exact sequence as in the Universal Coefficient Theorem, with the same consequences for classification. We also exhibit an example where filtrated K-theory is not yet a complete invariant. We describe two C*-algebras over a spaceXwith four points that have isomorphic filtrated K-theory without being KK(X)-equivalent. For this spaceX, we enrich filtrated K-theory by another K-theory functor to a complete invariant up to KK(X)-equivalence that satisfies a Universal Coefficient Theorem.


2015 ◽  
Vol 14 (10) ◽  
pp. 1550139 ◽  
Author(s):  
José L. Rodríguez ◽  
Lutz Strüngmann

In this paper, we first show that for every natural number n and every countable reduced cotorsion-free group K there is a short exact sequence [Formula: see text] such that the map G → H is a cellular cover over H and the rank of H is exactly n. In particular, the free abelian group of infinite countable rank is the kernel of a cellular exact sequence of co-rank 2 which answers an open problem from Rodríguez–Strüngmann [J. L. Rodríguez and L. Strüngmann, Mediterr. J. Math.6 (2010) 139–150]. Moreover, we give a new method to construct cellular exact sequences with prescribed torsion free kernels and cokernels. In particular we apply this method to the class of ℵ1-free abelian groups in order to complement results from the cited work and Göbel–Rodríguez–Strüngmann [R. Göbel, J. L. Rodríguez and L. Strüngmann, Fund. Math.217 (2012) 211–231].


1987 ◽  
Vol 29 (1) ◽  
pp. 13-19 ◽  
Author(s):  
G. J. Ellis

Various authors have obtained an eight term exact sequence in homologyfrom a short exact sequence of groups,the term V varying from author to author (see [7] and [2]; see also [5] for the simpler case where N is central in G, and [6] for the case where N is central and N ⊂ [G, G]). The most satisfying version of the sequence is obtained by Brown and Loday [2] (full details of [2] are in [3]) as a corollary to their van Kampen type theorem for squares of spaces: they give the term V as the kernel of a map G ∧ N → N from a “non-abelian exterior product” of G and N to the group N (the definition of G ∧ N, first published in [2], is recalled below). The two short exact sequencesandwhere F is free, together with the fact that H2(F) = 0 and H3(F) = 0, imply isomorphisms..The isomorphism (2) is essentially the description of H2(G) proved algebraically in [11]. As noted in [2], the isomorphism (3) is the analogue for H3(G) of the Hopf formula for H2(G).


1970 ◽  
Vol 68 (3) ◽  
pp. 637-639 ◽  
Author(s):  
Larry Smith

Let us denote by k*( ) the homology theory determined by the connective BU spectrum, bu, that is, in the notations of (1) and (9), bu2n = BU(2n,…,∞), bu2n+1 = U(2n + 1,…, ∞) with the spectral maps induced via Bott periodicity. The resulting spectrum, bu, is a ring spectrum. Recall that k*(point) ≅ Z[t], degree t = 2. There is a natural transformation of ring spectrainducing a morphismof homology functors. It is the objective of this note to establish: Theorem. Let X be a finite complex. Then there is a natural exact sequencewhere Z is viewed as a Z[t] module via the augmentationand, is induced by η*in the natural way.


2017 ◽  
Vol 120 (1) ◽  
pp. 115 ◽  
Author(s):  
Adam Rennie ◽  
David Robertson ◽  
Aidan Sims

We show that if $G$ is a second countable locally compact Hausdorff étale groupoid carrying a suitable cocycle $c\colon G\to\mathbb{Z}$, then the reduced $C^*$-algebra of $G$ can be realised naturally as the Cuntz-Pimsner algebra of a correspondence over the reduced $C^*$-algebra of the kernel $G_0$ of $c$. If the full and reduced $C^*$-algebras of $G_0$ coincide, we deduce that the full and reduced $C^*$-algebras of $G$ coincide. We obtain a six-term exact sequence describing the $K$-theory of $C^*_r(G)$ in terms of that of $C^*_r(G_0)$.


Author(s):  
Lixin Mao

Let [Formula: see text] be the class of all left [Formula: see text]-modules [Formula: see text] which has a projective resolution by finitely generated projectives. An exact sequence [Formula: see text] of right [Formula: see text]-modules is called neat if the sequence [Formula: see text] is exact for any [Formula: see text]. An exact sequence [Formula: see text] of left [Formula: see text]-modules is called clean if the sequence [Formula: see text] is exact for any [Formula: see text]. We prove that every [Formula: see text]-module has a clean-projective precover and a neat-injective envelope. A morphism [Formula: see text] of right [Formula: see text]-modules is called a neat-phantom morphism if [Formula: see text] for any [Formula: see text]. A morphism [Formula: see text] of left [Formula: see text]-modules is said to be a clean-cophantom morphism if [Formula: see text] for any [Formula: see text]. We establish the relationship between neat-phantom (respectively, clean-cophantom) morphisms and neat (respectively, clean) exact sequences. Also, we prove that every [Formula: see text]-module has a neat-phantom cover with kernel neat-injective and a clean-cophantom preenvelope with cokernel clean-projective.


2003 ◽  
Vol 2003 (22) ◽  
pp. 1383-1395 ◽  
Author(s):  
C. Joanna Su

The relative homotopy theory of modules, including the (module) homotopy exact sequence, was developed by Peter Hilton (1965). Our thrust is to produce an alternative proof of the existence of the injective homotopy exact sequence with no reference to elements of sets, so that one can define the necessary homotopy concepts in arbitrary abelian categories with enough injectives and projectives, and obtain, automatically, the projective relative homotopy theory as the dual. Furthermore, we pursue the relative (module) homotopy theory analogously to the absolute (module) homotopy theory. For these purposes, we embed the relative category into the category of long exact sequences, as a full subcategory, in our search for suitable notions of monomorphisms and injectives in the relative category.


Sign in / Sign up

Export Citation Format

Share Document