On the relation of connective K-theory to homology

1970 ◽  
Vol 68 (3) ◽  
pp. 637-639 ◽  
Author(s):  
Larry Smith

Let us denote by k*( ) the homology theory determined by the connective BU spectrum, bu, that is, in the notations of (1) and (9), bu2n = BU(2n,…,∞), bu2n+1 = U(2n + 1,…, ∞) with the spectral maps induced via Bott periodicity. The resulting spectrum, bu, is a ring spectrum. Recall that k*(point) ≅ Z[t], degree t = 2. There is a natural transformation of ring spectrainducing a morphismof homology functors. It is the objective of this note to establish: Theorem. Let X be a finite complex. Then there is a natural exact sequencewhere Z is viewed as a Z[t] module via the augmentationand, is induced by η*in the natural way.

1982 ◽  
Vol 92 (2) ◽  
pp. 263-274 ◽  
Author(s):  
J. E. McClure ◽  
V. P. Snaith

The construction of Dyer-Lashof operations in K-theory outlined in (6) and refined in (12) depends in an essential way on the descriptions of the mod-p K-theory of EZp, ×ZpXp and EΣ ×σ p Xp given there. Unfortunately, these descriptions are incorrect when p is odd except in the case where the Bockstein β is identically zero in K*(X; Zp), and even in this case the methods of proof used in (6) and (12) are not strong enough to show that the answer given there is correct. In this paper we repair this difficulty, obtaining a complete corrected description of K*(EZp ×ZpXp; Zp) and K*(EΣp) (theorem 3·1 below, which should be compared with ((12); theorems 3·8 and 3·9) and ((6); theorem 3)). Because of the error, the method used in (6) and (12) to construct Dyer-Lashof operations fails to go through for odd primes when non-zero Bocksteins occur, and it is not clear that this method can be repaired. We shall not deal with the construction of Dyer-Lashof operations in this paper. Instead, the first author will give a complete treatment of these operations in (5), using our present results and the theory of H∞-ring spectra to obtain strengthened versions of the results originally claimed in ((12); theorem 5·1). There is also a minor error in the mod-2 results of (12) (namely, the second formula in (12), theorem 3·8 (a) (ii)) should readwhere B2 is the second mod-2 Bockstein, and a similar change is necessary in the second formula of ((12), theorem 3·8(b) (ii)). The correction of this error requires the methods of (5) and will not be dealt with here; fortunately, the mod-2 calculations of ((12), §6–9), (10) and (11) are unaffected and remain true as stated.


Author(s):  
Toke Meier Carlsen ◽  
Søren Eilers ◽  
Mark Tomforde

AbstractLet C*(E) be the graph C*-algebra associated to a graph E and let J be a gauge-invariant ideal in C*(E). We compute the cyclic six-term exact sequence in K-theory associated to the extensionin terms of the adjacency matrix associated to E. The ordered six-term exact sequence is a complete stable isomorphism invariant for several classes of graph C*-algebras, for instance those containing a unique proper nontrivial ideal. Further, in many other cases, finite collections of such sequences constitute complete invariants.Our results allow for explicit computation of the invariant, giving an exact sequence in terms of kernels and cokernels of matrices determined by the vertex matrix of E.


Author(s):  
David Copeland Johnson ◽  
Larry Smith

The objective of this note is to complete in one essential way the study undertaken in (2) of the relation between complex bordism and the connective k-homology theory. Specifically, let us denote by MU*( ) the generalized homology theory associated to the Thorn spectrum MU(6), and by k*( ) the generalized homology theory associated to the connective bu spectrum (2, 4). Recall that


Author(s):  
Francis Clarke

Let G be a simply connected, semi-simple, compact Lie group, let K* denote Z/2-graded, representable K-theory, and K* the corresponding homology theory. The K-theory of G and of its classifying space BG are well known, (8),(1). In contrast with ordinary cohomology, K*(G) and K*(BG) are torsion-free and have simple multiplicative structures. If ΩG denotes the space of loops on G, it seems natural to conjecture that K*(ΩG) should have, in some sense, a more simple structure than H*(ΩG).


1996 ◽  
Vol 48 (3) ◽  
pp. 483-495 ◽  
Author(s):  
Dominique Arlettaz

AbstractThis paper shows that for the Moore spectrum MG associated with any abelian group G, and for any positive integer n, the order of the Postnikov k-invariant kn+1(MG) is equal to the exponent of the homotopy group πnMG. In the case of the sphere spectrum S, this implies that the exponents of the homotopy groups of S provide a universal estimate for the exponent of the kernel of the stable Hurewicz homomorphism hn: πnX → En(X) for the homology theory E*(—) corresponding to any connective ring spectrum E such that π0E is torsion-free and for any bounded below spectrum X. Moreover, an upper bound for the exponent of the cokernel of the generalized Hurewicz homomorphism hn: En(X) → Hn(X; π0E), induced by the 0-th Postnikov section of E, is obtained for any connective spectrum E. An application of these results enables us to approximate in a universal way both kernel and cokernel of the unstable Hurewicz homomorphism between the algebraic K-theory of any ring and the ordinary integral homology of its linear group.


1980 ◽  
Vol 45 (1) ◽  
pp. 103-120 ◽  
Author(s):  
J. V. Tucker

A natural way of studying the computability of an algebraic structure or process is to apply some of the theory of the recursive functions to the algebra under consideration through the manufacture of appropriate coordinate systems from the natural numbers. An algebraic structure A = (A; σ1,…, σk) is computable if it possesses a recursive coordinate system in the following precise sense: associated to A there is a pair (α, Ω) consisting of a recursive set of natural numbers Ω and a surjection α: Ω → A so that (i) the relation defined on Ω by n ≡α m iff α(n) = α(m) in A is recursive, and (ii) each of the operations of A may be effectively followed in Ω, that is, for each (say) r-ary operation σ on A there is an r argument recursive function on Ω which commutes the diagramwherein αr is r-fold α × … × α.This concept of a computable algebraic system is the independent technical idea of M.O.Rabin [18] and A.I.Mal'cev [14]. From these first papers one may learn of the strength and elegance of the general method of coordinatising; note-worthy for us is the fact that computability is a finiteness condition of algebra—an isomorphism invariant possessed of all finite algebraic systems—and that it serves to set upon an algebraic foundation the combinatorial idea that a system can be combinatorially presented and have effectively decidable term or word problem.


1978 ◽  
Vol 30 (01) ◽  
pp. 45-53 ◽  
Author(s):  
Donald M. Davis

The Brown-Peterson spectrum BP has been used recently to establish some new information about the stable homotopy groups of spheres [9; 11]. The best results have been achieved by using the associated homology theory BP* ( ), the Hopf algebra BP*(BP), and the Adams-Novikov spectral sequence


1971 ◽  
Vol 23 (3) ◽  
pp. 503-506
Author(s):  
Hsiang-Dah Hou

Let R be a ring with 1 ≠ 0 and α, β, γ R-endomorphisms of R-modules A, B, and C respectively. We shall denote by M(R) the category of R-modules, and by End(R) the category of R-endomorphisms. For objects α and β of End(R) a morphism λ: α → β is an R-homomorphism such that λα = β λ. We shall denote by Idm(R) the full subcategory of End(R) whose objects are idempotents. Idm(R) is an abelian category, ker, coker and im are constructed in the naive way and henceis exact in M(R) if and only ifis exact in Idm(R), where the domains of α,β, and γ are A, B, and C respectively. One sees that End (R) as well as Idm(R) is abelian.


1980 ◽  
Vol 32 (6) ◽  
pp. 1299-1305 ◽  
Author(s):  
Barbu C. Kestenband

We show that any PG(2n, q2) is a disjoint union of (q2n+1 − 1)/ (q − 1) caps, each cap consisting of (q2n+1 + 1)/(q + 1) points. Furthermore, these caps constitute the “large points” of a PG(2n, q), with the incidence relation defined in a natural way.A square matrix H = (hij) over the finite field GF(q2), q a prime power, is said to be Hermitian if hijq = hij for all i, j [1, p. 1161]. In particular, hii ∈ GF(q). If if is Hermitian, so is p(H), where p(x) is any polynomial with coefficients in GF(q).Given a Desarguesian Projective Geometry PG(2n, q2), n > 0, we denote its points by column vectors:All Hermitian matrices in this paper will be 2n + 1 by 2n + 1, n > 0.


1981 ◽  
Vol 33 (4) ◽  
pp. 893-900 ◽  
Author(s):  
J. A. Gerhard ◽  
Mario Petrich

A semigroup which is a union of groups is said to be completely regular. If in addition the idempotents form a subsemigroup, the semigroup is said to be orthodox and is called an orthogroup. A completely regular semigroup S is provided in a natural way with a unary operation of inverse by letting a-l for a ∈ S be the group inverse of a in the maximal subgroup of S to which a belongs. This unary operation satisfies the identities(1)(2)(3)In fact a completely regular semigroup can be defined as a unary semigroup (a semigroup with an added unary operation) satisfying these identities. An orthogroup can be characterized as a completely regular semigroup satisfying the additional identity(4)


Sign in / Sign up

Export Citation Format

Share Document