scholarly journals Comparative Analysis on Multiple Criteria Decision Making Techniques: An Application

2019 ◽  
2020 ◽  
Vol 14 (3) ◽  
pp. 373-391
Author(s):  
Guangyan Lu ◽  
Wenjun Chang

In multiple criteria decision making (MCDM) with interval-valued belief distributions (IVBDs), individual IVBDs on multiple criteria are combined explicitly or implicitly to generate the expected utilities of alternatives, which can be used to make decisions with the aid of decision rules. To analyze an MCDM problem with a large number of criteria and grades used to profile IVBDs, effective algorithms are required to find the solutions to the optimization models within a large feasible region. An important issue is to identify an algorithm suitable for finding accurate solutions within a limited or acceptable time. To address this issue, four representative evolutionary algorithms, including genetic algorithm, differential evolution algorithm, particle swarm optimization algorithm, and gravitational search algorithm, are selected to combine individual IVBDs of alternatives and generate the minimum and maximum expected utilities of alternatives. By performing experiments with different numbers of criteria and grades, a comparative analysis of the four algorithms is provided with the aid of two indicators: accuracy and efficiency. Experimental results indicate that particle swarm optimization algorithm is the best among the four algorithms for combining individual IVBDs and generating the minimum and maximum expected utilities of alternatives.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 347
Author(s):  
Dragiša Stanujkić ◽  
Darjan Karabašević ◽  
Gabrijela Popović ◽  
Edmundas Kazimieras Zavadskas ◽  
Muzafer Saračević ◽  
...  

This article presents a comparison of the results obtained using the newly proposed Simple Weighted Sum Product method and some prominent multiple criteria decision-making methods. For comparison, several analyses were performed using the Python programming language and its NumPy library. The comparison was also made on a real decision-making problem taken from the literature. The obtained results confirm the high correlation of the results obtained using the Simple Weighted Sum Product method and selected multiple criteria decision-making methods such as TOPSIS, SAW, ARAS, WASPAS, and CoCoSo, which confirms the usability of the Simple Weighted Sum Product method for solving multiple criteria decision-making problems.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 437 ◽  
Author(s):  
Vakkas Uluçay ◽  
Memet Şahin ◽  
Nasruddin Hassan

Smarandache defined a neutrosophic set to handle problems involving incompleteness, indeterminacy, and awareness of inconsistency knowledge, and have further developed it neutrosophic soft expert sets. In this paper, this concept is further expanded to generalized neutrosophic soft expert set (GNSES). We then define its basic operations of complement, union, intersection, AND, OR, and study some related properties, with supporting proofs. Subsequently, we define a GNSES-aggregation operator to construct an algorithm for a GNSES decision-making method, which allows for a more efficient decision process. Finally, we apply the algorithm to a decision-making problem, to illustrate the effectiveness and practicality of the proposed concept. A comparative analysis with existing methods is done and the result affirms the flexibility and precision of our proposed method.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1554
Author(s):  
Dragiša Stanujkić ◽  
Darjan Karabašević ◽  
Gabrijela Popović ◽  
Predrag S. Stanimirović ◽  
Muzafer Saračević ◽  
...  

The environment in which the decision-making process takes place is often characterized by uncertainty and vagueness and, because of that, sometimes it is very hard to express the criteria weights with crisp numbers. Therefore, the application of the Grey System Theory, i.e., grey numbers, in this case, is very convenient when it comes to determination of the criteria weights with partially known information. Besides, the criteria weights have a significant role in the multiple criteria decision-making process. Many ordinary multiple criteria decision-making methods are adapted for using grey numbers, and this is the case in this article as well. A new grey extension of the certain multiple criteria decision-making methods for the determination of the criteria weights is proposed. Therefore, the article aims to propose a new extension of the Step-wise Weight Assessment Ratio Analysis (SWARA) and PIvot Pairwise Relative Criteria Importance Assessment (PIPRECIA) methods adapted for group decision-making. In the proposed approach, attitudes of decision-makers are transformed into grey group attitudes, which allows taking advantage of the benefit that grey numbers provide over crisp numbers. The main advantage of the proposed approach in relation to the use of crisp numbers is the ability to conduct different analyses, i.e., considering different scenarios, such as pessimistic, optimistic, and so on. By varying the value of the whitening coefficient, different weights of the criteria can be obtained, and it should be emphasized that this approach gives the same weights as in the case of crisp numbers when the whitening coefficient has a value of 0.5. In addition, in this approach, the grey number was formed based on the median value of collected responses because it better maintains the deviation from the normal distribution of the collected responses. The application of the proposed approach was considered through two numerical illustrations, based on which appropriate conclusions were drawn.


Sign in / Sign up

Export Citation Format

Share Document