Special Issue on Digital Domains

2014 ◽  
Vol 2 (3) ◽  
pp. 145-146 ◽  
Author(s):  
Jason T. Herrmann

More and more archaeologists who once relied on shovels and surveys now regularly collect data with digital sensors and use computer-based management systems to carry out complex analyses. Geographic information systems (GIS) and geographic information science (GISc), satellite remote sensing, aerial and close-range photography, terrestrial and aerial Light Detection and Ranging (LiDAR), near-surface geophysics, and a wide array of visualization schemes designed to integrate and display data from multiple platforms are now integral to every stage of archaeological investigation, interpretation, and reporting. Even though these methods are an increasing part of archaeological research worldwide, there have been few conferences, meetings, or workshops dedicated to sharing methods and applications in digital archaeology in North America or even in the Western Hemisphere, with the exception of a few special sessions in regional or general archaeological conferences. This deficit is particularly striking in comparison with the situation in Europe, where several societies dedicated to archaeological geomatics regularly hold both continental and regional meetings.

2013 ◽  
pp. 602-620 ◽  
Author(s):  
Buket Ayşegul Ozbakir

Geographic Information Systems (GIS) are computer-based systems used to store and manipulate geographical data, and perform spatial analysis. These systems serve to reveal the patterns, relationships, and anomalies, or sometimes invisible characteristics of the geographical data in various applications. While the term “GIS” indicates an object or tool, GIScience, the acronym for Geographic Information Science, covers a broader context of methodologies behind spatial data analysis. Among different application areas of GIS, “environmental monitoring and modeling” plays a significant role in the development of the very first GIS in the world-The Canada Geographic Information Systems (CGIS) in the mid-1960s. After almost 40 years of history, significant changes and challenges took place in the geographic information research agenda. This chapter will point out some of the vital tools and methods used in GIScience (including GIS, remote sensing and 3D modeling) to grasp issues of our urban environments. With recent technological advances that facilitate our understanding of the environment; it is more evident that the vision of more “livable” cities is not too far but not easy as well.


Author(s):  
Franco Niccolucci

Since the end of the 20th century the widespread use of digital applications in archaeology has legitimized their inclusion in the archaeological toolbox. Together with archaeological sciences, databases, GIS and other computer-based methods are nowadays present in every respectable archaeological investigation. This makes archaeology a peculiar discipline, where the scientific method combines with the historical one to produce new knowledge. However, the large availability of archaeological data creates the risk of a data deluge and may suggest using online information just to collect previous interpretations rather than to re-use the data supporting them. A ‘Grand Challenges’ list compiled some years ago includes important research questions that undergird contemporary issues and require an appropriate digital methodology to be addressed. The present paper discusses the benefits, or better the absolute need, of a data-centric methodology to address large-scale research. It argues that an acritical use of the so-called ‘Big Data’ approach may be questionable. It suggests how the combination of artificial intelligence with human intelligence is the key to progress into the understanding of phenomena of paramount societal importance for researchers and for the public at large.


Author(s):  
Buket Aysegul Ozbakir

Geographic Information Systems (GIS) are computer-based systems used to store and manipulate geographical data, and perform spatial analysis. These systems serve to reveal the patterns, relationships, and anomalies, or sometimes invisible characteristics of the geographical data in various applications. While the term “GIS” indicates an object or tool, GIScience, the acronym for Geographic Information Science, covers a broader context of methodologies behind spatial data analysis. Among different application areas of GIS, “environmental monitoring and modeling” plays a significant role in the development of the very first GIS in the world-The Canada Geographic Information Systems (CGIS) in the mid-1960s. After almost 40 years of history, significant changes and challenges took place in the geographic information research agenda. This chapter will point out some of the vital tools and methods used in GIScience (including GIS, remote sensing and 3D modeling) to grasp issues of our urban environments. With recent technological advances that facilitate our understanding of the environment; it is more evident that the vision of more “livable” cities is not too far but not easy as well.


2021 ◽  
Author(s):  
Maike Offer ◽  
Riccardo Scandroglio ◽  
Daniel Draebing ◽  
Michael Krautblatter

<p>Warming of permafrost in steep rock walls decreases their mechanical stability and could triggers rockfalls and rockslides. However, the direct link between climate change and permafrost degradation is seldom quantified with precise monitoring techniques and long-term time series. Where boreholes are not possible, laboratory-calibrated Electrical Resistivity Tomography (ERT) is presumably the most accurate quantitative permafrost monitoring technique providing a sensitive record for frozen vs. unfrozen bedrock. Recently, 4D inversions allow also quantification of frozen bedrock extension and of its changes with time (Scandroglio et al., in review).</p><p>In this study we (i) evaluate the influence of the inversion parameters on the volumes and (ii) connect the volumetric changes with measured mechanical consequences.</p><p>The ERT time-serie was recorded between 2006 and 2019 in steep bedrock at the permafrost affected Steintälli Ridge (3100 m asl). Accurately positioned 205 drilled-in steel electrodes in 5 parallel lines across the rock ridge have been repeatedly measured with similar hardware and are compared to laboratory temperature-resistivity (T–ρ) calibration of water-saturated samples from the field. Inversions were conducted using the open-source software BERT for the first time with the aim of estimating permafrost volumetric changes over a decade.</p><p>(i) Here we present a sensitivity analysis of the outcomes by testing various plausible inversion set-ups. Results are computed with different input data filters, data error model, regularization parameter (λ), model roughness reweighting and time-lapse constraints. The model with the largest permafrost degradation was obtained without any time-lapse constraints, whereas constraining each model with the prior measurement results in the smallest degradation. Important changes are also connected to the data error estimation, while other setting seems to have less influence on the frozen volume. All inversions confirmed a drastic permafrost degradation in the last 13 years with an average reduction of 3.900±600 m<sup>3</sup> (60±10% of the starting volume), well in agreement with the measured air temperatures increase.</p><p>(ii) Average bedrock thawing rate of ~300 m<sup>3</sup>/a is expected to significantly influence the stability of the ridge. Resistivity changes are especially evident on the south-west exposed side and in the core of the ridge and are here connected to deformations measured with tape extensometer, in order to precisely estimate the mechanical consequences of bedrock warming.</p><p>In summary, the strong degradation of permafrost in the last decade it’s here confirmed since inversion settings only have minor influence on volume quantification. Internal thermal dynamics need correlation with measured external deformation for a correct interpretation of stability consequences. These results are a fundamental benchmark for evaluating mountain permafrost degradation in relation to climate change and demonstrate the key role of temperature-calibrated 4D ERT.</p><p> </p><p>Reference:</p><p>Scandroglio, R. et al. (in review) ‘4D-Quantification of alpine permafrost degradation in steep rock walls using a laboratory-calibrated ERT approach’, <em>Near Surface Geophysics</em>.</p>


Sign in / Sign up

Export Citation Format

Share Document