scholarly journals Stable potassium isotopic compositions of angrites: Implications for volatile element depletion in their parent body

2021 ◽  
Author(s):  
Yan Hu ◽  
Frédéric Moynier
Author(s):  
Kei Shimizu ◽  
Conel M. O'D. Alexander ◽  
Erik H. Hauri ◽  
Adam R. Sarafian ◽  
Larry R. Nittler ◽  
...  

2021 ◽  
Author(s):  
Jasmeet K. Dhaliwal ◽  
James M.D. Day ◽  
John B. Creech ◽  
Frederic Moynier

<p>The moderately volatile elements, Cu and Zn, are not strongly affected by magmatic differentiation [1, 2] and are important tracers of volatile depletion in planetary bodies, particularly low-mass, airless bodies [3]. New isotopic ratio and abundance measurements for both Cu and Zn are presented for eucrites to more fully understand volatile depletion processes that affected the parent-body of the howardite-eucrite-diogenite (HED) meteorites, the asteroid 4-Vesta. Zinc isotope ratios are reported for twenty-eight eucrite samples, which along with prior data [4] yield a range of δ<sup>66</sup>Zn from -1.8 to +6.3 ‰, excluding one outlier, PCA 82502 (δ<sup>66</sup>Zn = -7.8 ‰) and a Zn concentration range from 0.3 to 3.8 p.p.m. Heavy Zn isotopic ratios (positive δ<sup>66</sup>Zn compositions) in eucrites form a negative trend with Zn concentration, reflecting volatile depletion processes on Vesta that are similar to the Moon [5, 6]. Within the combined sample set, eleven eucrites have light Zn isotopic compositions from δ<sup>66</sup>Zn of -0.02 to -7.8 ‰, with the majority having more negative compositions than likely chondritic precursors (maximum δ<sup>66</sup>Zn of ~ -0.2 ‰ [7]). These samples are interpreted to reflect condensates formed subsequent to surface volatilization and outgassing, such as during impact bombardment. Measurements of Cu compositions are also reported for nineteen of the samples, yielding a range of δ<sup>65</sup>Cu from -1.6 to +0.9 ‰, and range of Cu concentrations from 0.2 to 2.8 p.p.m., with the exception of Stannern (Cu > 10 ppm). As with Zn, negative Cu isotopic ratios that are lighter than chondritic compositions (δ<sup>65</sup>Cu ~ -0.5 ‰ [8]) are attributed to recondensation that occurred following impact-induced vaporization (cf. [9]). Within the wide ranges of Zn and Cu isotopic compositions measured in eucrites, most samples cluster within ~ 0 ‰ < δ<sup>66</sup>Zn < +3 ‰ and ~ 0.2 ‰ < δ<sup>65</sup>Cu < +0.9 ‰. This range is interpreted to reflect volatile depletion processes similar to those that affected the Moon (BSM: δ<sup>66</sup>Zn +1.4 ± 0.5‰ [5, 6, 10, 11] and δ<sup>65</sup>Cu = +0.92 ± 0.16‰ [9-11]). The greater heterogeneity in eucrite Zn and Cu isotopic compositions compared to lunar samples can be attributed to the smaller size of the HED parent asteroid, which may have experienced more limited homogenization of these signatures following volatile depletion and for eucrites which have experienced complex impact addition and metamorphic processes.  </p><p>[1] Chen et al. (2013) EPSL, 369, 34-42. [2] Savage et al. (2015) Geochemical Perspective Letters, 1, 53-64. [3] Day and Moynier (2014) Philisophical Transactions of the Royal Society A, 372, p.20130259. [4] Paniello et al. (2012) GCA, 86, 76-87. [5] Paniello et al. (2012) Nature, 490, 376-379. [6] Kato et al. 2015 Nature Communications, 6, 1-4. [7] Luck et al. (2005) GCA 69, 5351-5363. [8] Luck et al. (2003) GCA, 67¸143-151. [9] Day et al. (2019) GCA, 266, 131-143. [10] Moynier et al. (2006) GCA, 70, 6103-6117. [11] Herzog et al. (2009) GCA, 73, 5884-5904.</p>


2017 ◽  
Vol 212 ◽  
pp. 196-210 ◽  
Author(s):  
M. van Ginneken ◽  
J. Gattacceca ◽  
P. Rochette ◽  
C. Sonzogni ◽  
A. Alexandre ◽  
...  

Author(s):  
Adam R. Sarafian ◽  
Erik H. Hauri ◽  
Francis M. McCubbin ◽  
Thomas J. Lapen ◽  
Eve L. Berger ◽  
...  

Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207 Pb– 206 Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


2021 ◽  
Author(s):  
Kei Shimizu ◽  
Conel Alexander ◽  
Erik Hauri ◽  
Adam Sarafian ◽  
Larry Nittler ◽  
...  

Kerntechnik ◽  
2015 ◽  
Vol 80 (4) ◽  
pp. 394-401 ◽  
Author(s):  
S. S. Aleshin ◽  
S. S. Gorodkov ◽  
A. I. Shcherenko

Author(s):  
Ni Nyoman Suryani ◽  
I Wayan Suarna ◽  
Ni Putu Sarini ◽  
I Gede Mahardika

To determine the effect of energy levels on digestible nutrient, milk production and milk quality of 7 months pregnant Bali cattle, was the purpose of this study. The study was conducted in Bali, Province of Indonesia on 12 pregnant breeding phase of pre-calving (2 months before the birth) with the parent body weight 329-340 kg/head. The treatment given is four types of Metabolizable Energy (ME) levels: 2000, 2100, 2200 and 2300/kg respectively as treatment A, B, C, and D. All ration contain 10% of crude protein. Variables measured: energy intake, digestible nutrient, milk yield, and milk quality. This research is a randomized block design. The results showed that increase energy ration until 2300 kcal ME/kg would significantly (P<0.05) increase energy intake and highest at cattle consumed ratio D is 22239.55 kcal/day. However, digestible nutrient was not affected. Milk production increased with increasing energy rations and highest (P<0.05) at cattle received treatment D is 2179.83 ml/day compared to treatment A 936.67 ml/day. Milk fat and milk lactose also highest (P<0.05) in treatment D are 8.56% and 4.76% respectively. Based on these results, it can be concluded that increase energy ration will increase energy intake, milk yield and milk fat and milk lactose of Bali cattle. 


Sign in / Sign up

Export Citation Format

Share Document