Better “Death in Its Most Awful Shapes” than Life in Nova Scotia: Climate Change and the Nova Scotia Maroons, 1796-1800

2021 ◽  
Vol 45 (2) ◽  
pp. 90-121
Author(s):  
Morgan Vanek
Keyword(s):  

2012 ◽  
Author(s):  
Raheleh Malekian ◽  
Robert Gordon ◽  
Ali Madani ASABE Member ◽  
Seyyed Ebrahim Hashemi

Author(s):  
David J. Garbary ◽  
Jonathan Ferrier ◽  
Barry R. Taylor

Over 1400 flowering records of 135 species were recorded from over 125visits to more than 20 sites in Antigonish County, Nova Scotia from November2005 to January 2006, when the growing season is normally over. The speciesidentified were primarily herbaceous dicots; however, there were four speciesof woody plants (Cornus sericea, Spiraea latifolia, Symphoricarpos albusand Salix sp.) and one monocot (Allium schoenoprasum). The number ofspecies flowering declined linearly as fall progressed, as did the amountof flowering for each species. Nevertheless, over 40 species were still inflower in early December, and over 20 species flowered in January. Thefinal flowering date was 21 January, when ten species were found. Thiswork builds on a previous study in 2001, when 93 species were recordedin flower during November-December. In addition to the 30% increase inrecorded species in 2005, almost 50% of the species found in 2005 werenot recorded in 2001. This study provides an expanded baseline againstwhich changes in flowering phenology can be evaluated with respect tosubsequent regional climate change.Key Words: Antigonish, flowering, Nova Scotia, phenology, climate change


2012 ◽  
Vol 88 (06) ◽  
pp. 708-721 ◽  
Author(s):  
M. Irfan Ashraf ◽  
Charles P.-A. Bourque ◽  
David A. MacLean ◽  
Thom Erdle ◽  
Fan-Rui Meng

Empirical growth and yield models developed from historical data are commonly used in developing long-term strategic forest management plans. Use of these models rests on an assumption that there will be no future change in the tree growing environment. However, major impacts on forest growing conditions are expected to occur with climate change. As a result, there is a pressing need for tools capable of incorporating outcomes of climate change in their predictions of forest growth and yield. Process-based models have this capability and may, therefore, help to satisfy this requirement. In this paper, we evaluate the suitability of an ecological, individual-tree-based model (JABOWA-3) in generating forest growth and yield projections for diverse forest conditions across Nova Scotia, Canada. Model prediction accuracy was analyzed statistically by comparing modelled with observed basal area and merchantable volume changes for 35 permanent sample plots (PSPs) measured over periods of at least 25 years. Generally, modelled basal area and merchantable volume agreed fairly well with observed data, yielding coefficients of determination (r2) of 0.97 and 0.94 and model efficiencies (ME) of 0.96 and 0.93, respectively. A Chi-square test was performed to assess model accuracy with respect to changes in species composition. We found that 83% of species-growth trajectories based on measured basal area were adequately modelled with JABOWA-3 (P > 0.9). Model-prediction accuracy, however, was substantially reduced for those PSPs altered by some level of disturbance. In general, JABOWA-3 is much better at providing forest yield predictions, subject to the availability of suitable climatic and soil information.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
David J. Garbary ◽  
Megan P. Fass ◽  
Herb Vandermeulen

Abstract The distribution and ecology of the invasive brown alga Fucus serratus along the 500 km Atlantic coast of Nova Scotia, Canada, has been poorly explored. We observed significant intertidal penetration at four sites in the southwestern part of the province, and then examined numerous sites along the Atlantic coast of Nova Scotia. Surveys of attached algae in intertidal and shallow subtidal zones and wrack show that F. serratus has become a dominant plant in the low to mid-intertidal zone and can be expected on headlands along the South Shore of Nova Scotia where it can occupy up to 40% of the intertidal zone with cover >75% and mean densities of up to 10 kg m−1. In this zone, F. serratus has replaced Chondrus crispus as the major canopy species, although C. crispus and Corallina officinalis remain primary understory species. At slightly higher elevations, F. serratus was common as an understory beneath Ascophyllum nodosum and Fucus vesiculosus. While geographic spread along the Atlantic coast might reflect the natural dispersal capacity of F. serratus, we hypothesize that the ecological extension into the intertidal zone may be facilitated by harvesting of A. nodosum and by climate change in an ocean-warming hotspot.


Author(s):  
Shannon MacDonald ◽  
Leanne Zrum ◽  
Stéphane Grenon ◽  
Sonia Laforest ◽  
Patrick Lambert

The 1970 SS Arrow incident in Chedabucto Bay, Nova Scotia (NS) was a milestone event in Canada's oil spill response history and has been used by Environment and Climate Change Canada (ECCC) for ongoing research for almost 50 years. In August of 2015, the remaining sunken section of the SS ARROW released Bunker C oil from its tanks and some sections of shorelines impacted in 1970 were affected once again. The Canadian Coast Guard led the 2015 response effort, which included Shoreline Clean-Up and Assessment Technique (SCAT) surveys, to evaluate the contamination on the shorelines of Chedabucto Bay. This poster presents an overview of the 1970 event as well as the shoreline contamination resulting from the 2015 release from the SS Arrow. It summarizes the SCAT survey results and the operational response of the ECCC's National Environmental Emergencies Centre (NEEC) in support of the incident.


Sign in / Sign up

Export Citation Format

Share Document