scholarly journals Shoreline Contamination Report 2015 SS Arrow Spill Chedabucto Bay, NS, Canada

Author(s):  
Shannon MacDonald ◽  
Leanne Zrum ◽  
Stéphane Grenon ◽  
Sonia Laforest ◽  
Patrick Lambert

The 1970 SS Arrow incident in Chedabucto Bay, Nova Scotia (NS) was a milestone event in Canada's oil spill response history and has been used by Environment and Climate Change Canada (ECCC) for ongoing research for almost 50 years. In August of 2015, the remaining sunken section of the SS ARROW released Bunker C oil from its tanks and some sections of shorelines impacted in 1970 were affected once again. The Canadian Coast Guard led the 2015 response effort, which included Shoreline Clean-Up and Assessment Technique (SCAT) surveys, to evaluate the contamination on the shorelines of Chedabucto Bay. This poster presents an overview of the 1970 event as well as the shoreline contamination resulting from the 2015 release from the SS Arrow. It summarizes the SCAT survey results and the operational response of the ECCC's National Environmental Emergencies Centre (NEEC) in support of the incident.

1989 ◽  
Vol 1989 (1) ◽  
pp. 189-191
Author(s):  
Darryle M. Waldron

ABSTRACT Oil spill response has evolved tremendously over the past 20 years in technology and technique, as well as in the social demand for a clean environment. The cost of response to a pollution incident has likewise grown at a time in which both federal and private funds are less available. Although the spiller may publicly claim he will clean up the spill no matter what the cost, cost becomes an issue as the bills start coming in. The purpose of this paper is to provoke consideration of the financial management of an oil spill response, not only to reduce costs, but to reduce confusion during the early days of a response. As in any type of emergency response, contingency planning is essential for success. Having designated, but flexible, procedures and plans in place before the spill will allow the experts to concentrate on mitigation instead of future litigation. The ideas presented here are based on experience in federal responses, common sense, basic financial management principles, and a business philosophy of integrity and efficiency.


1993 ◽  
Vol 1993 (1) ◽  
pp. 127-133
Author(s):  
Mac W. McCarthy ◽  
John McGrath

ABSTRACT On July 22, 1991, the Tuo Hai, a 46,500 ton Chinese grain carrier, collided with the Tenyo Maru, a 4,800 ton Japanese fish processing ship, off the coast of Washington State. The Tenyo Maru sank, creating an oil spill that cost upwards of $4 million (U.S.) to clean up. The incident initiated a joint response from the U.S. and Canadian governments. As part of this response, the Canadian Coast Guard mobilized an SRN-6 hovercraft. This air cushioned vehicle (ACV) provided logistical support to responders on both sides of the international boundary. The response operation along the Pacific Coast was extensive. Dense fog and the remote location of the impacted area provided formidable challenges to the cleanup effort. It was the mission scenario of the Canadian SRN-6 hovercraft to provide logistical support—as an experiment in ACV utility—to the organizations responding to this incident. Based on this experience, it can be argued that the hovercraft offers great potential value in responding to marine oil spills. Appropriate application of ACV technology can enhance oil spill response work, spill waste management, and incident surveillance. This paper discusses the contribution of the SRN-6 hovercraft to the Tenyo Maru response, briefly examines the use of another, very different hovercraft, during a response in the Gulf of St. Lawrence, and reviews a new hovercraft design and discusses its potential contributions.


1995 ◽  
Vol 1995 (1) ◽  
pp. 663-666
Author(s):  
Peter A. Tebeau

ABSTRACT Successful oil spill response requires effectively managing the level of effort devoted to response operations. This includes choosing appropriate technologies and implementing them to achieve optimal environmental benefit, while controlling costs. At the end of the response, effective management requires resolving the “how clean is clean” issue to ensure a smooth termination of the response effort. Various approaches to making these management decisions are reviewed, based on experience in the Exxon Valdez, American Trader, and Morris J. Berman spills. The advantages and constraints of these approaches are summarized, along with suggestions about how the process might be facilitated.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2017027
Author(s):  
Tim Gunter

Among the variety of oil spill response countermeasures, including mechanical, chemical, in-situ burning and bioremediation, deployment of chemical dispersants has been successfully utilized in numerous oil spills. This paper will review the history of the United States Coast Guard (USCG) C-130 Air Dispersant Delivery System (ADDS) capability, deployment in remote areas, and associated challenges. ADDS consists of a large tank with dispersant(e.g., 51,000 pounds), owned and operated by an industry partner, used aboard USCG C-130 aircraft designed to be ADDS capable as specified in various agreements for marine environmental protection missions. ADDS is a highly complex tool to utilize, requiring extensive training by air crews and industry equipment technicians to safely and properly deploy during an oil spill response. In 2011, the Commandant of the USCG, Admiral Papp reaffirmed the USCG's C-130 ADDS capability during a hearing before the Senate Committee on Commerce, Science, and Transportation, Subcommittee on Oceans, Atmosphere, Fisheries and the Coast Guard. The use of ADDS in remote areas creates unique challenges, such as logistical coordination between the USCG and spill response industry partners and maintaining proficiency with personnel. It is critical for federal, state, and local agencies, industry, and academia to understand the history and challenges of ADDS to ensure the successful utilization of this response tool in an actual oil spill incident.


2017 ◽  
Vol 2017 (1) ◽  
pp. 1453-1470
Author(s):  
LT Christopher M. Kimrey

ABSTRACT 2017-205 Catastrophic events like Deepwater Horizon, Exxon Valdez, major hurricanes, and other such anomalies have a tendency to overwhelm the initial crisis management leadership due to the chaotic nature of the event. The inability to quickly and accurately make critical assessments about the magnitude and complexity of the emerging catastrophe can spell disaster for crisis managers long before the response ever truly takes shape. This paper argues for the application of metacognitive models for sense and decision-making. Rather than providing tools and checklists as a recipe for success, this paper endeavors to provide awareness of the cognitive processes and heuristics that tend to emerge in crises including major oil spills, making emergency managers aware of their existence and potential impacts. Awareness, we argue, leads to recognition and self-awareness of key behavioral patterns and biases. The skill of metacognition—thinking about thinking—is what we endeavor to build through this work. Using a literature review and cogent application to oil spill response, this paper reviews contemporary theories on metacognition and sense-making, as well as concepts of behavioral bias and risk perception in catastrophic environments. When catastrophe occurs—and history has proven they will—the incident itself and the external pressures of its perceived management arguably emerge simultaneously, but not necessarily in tandem with one another. Previous spills have demonstrated how a mismanaged incident can result in an unwieldy and caustic confluence of external forces. This paper provides an awareness of biases that lead to mismanagement and apply for the first time a summary of concepts of sense-making and metacognition to major oil spill response. The views and ideas expressed in this paper are those of the author and do not necessarily reflect the views of the U.S. Coast Guard or Department of Homeland Security.


2017 ◽  
Vol 2017 (1) ◽  
pp. 173-192
Author(s):  
Stacey L. Crecy ◽  
Melissa E. Perera ◽  
Elizabeth J. Petras ◽  
John A. Tarpley

ABSTRACT #2017-373 Federal agencies involved in oil spill response in the U.S. are required to comply with several environmental compliance laws. Where a Federal agency is operating in a way that may affect endangered species in the area, Section 7 of the Endangered Species Act (ESA) requires the agency to “consult” with the two Federal agencies responsible for protecting those species and habitats – the National Marine Fisheries Service (NMFS) and the United States Fish and Wildlife Service (USFWS). Following the Deepwater Horizon oil spill, nonprofit organizations filed several lawsuits against the U.S. Coast Guard (USCG) and the Environmental Protection Agency (EPA) (the “Action Agencies”) for failure to comply with the ESA during oil spill contingency planning. In one case, a settlement required the Action Agencies to consult with the NMFS and USFWS (together, called the “Services”) on the plan to use oil spill dispersants in California waters. Perhaps responding to these developments, several Regional Response Teams across the country initiated or made plans to review the status of their ESA Section 7 consultations. These efforts have varied in cost, scope, composition of agency representatives involved, and success in completing a consultation for a variety of reasons. There have been numerous challenges for USCG and EPA in meeting the ESA Section 7 consultation requirements for oil spill planning. First, the most recent framework for cooperation between the Action Agencies and the Services regarding consulting on oil spill planning and response activities is contained in an Interagency Memorandum of Agreement (MOA) signed in 2001. Although the agreement is still valid, some parts have been identified as outdated or in need of clarification. Secondly, there are no direct funding mechanisms or dedicated personnel assigned to the Action Agencies to work on pre-spill ESA Section 7 consultations. Third, recommendations and consultation outcomes can vary between Service agencies as well as internally within each Service agency due to a high level of regional autonomy. In 2015, the National Response Team (NRT) formed a new, interagency subcommittee to improve the Federal Action Agencies’ ability to comply with environmental laws such as the ESA with respect to oil spill response and pre-spill planning. A workgroup of the NRT Subcommittee was formed to specifically address pre-spill ESA Section 7 consultation processes. The workgroup includes regional and national representatives from the Action Agencies and the Services. In addition to strengthening relationships and understanding among the participating agencies, the workgroup has identified gaps in the 2001 MOA and is in the process of developing tools and templates on how to conduct pre-spill ESA Section 7 consultations to help fill some of the existing gaps. The workgroup ultimately hopes to facilitate the development of updated, complete, efficient, and consistent ESA Section 7 consultations across the nation.


1997 ◽  
Vol 1997 (1) ◽  
pp. 513-515
Author(s):  
John H. Giesen ◽  
Jon D. MacArthur

ABSTRACT Faced with training and travel dollar constraints, California's Department of Fish and Game and the 11th U.S. Coast Guard District worked to form a multiorganizational partnership designed to leverage required resources to conduct a premier operational-level oil spill response training program in the state. The partnership included no less than six major organizations from both the public and private sectors, each playing critical roles in planning and conducting the training. Major hurdles overcome were curriculum development and operational support. Both of these challenges were resolved through a unified management approach in which the ultimate objective became success of the course. The lessons learned from the program provide guidance and rationale for future such efforts.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2879-2894
Author(s):  
Christopher Klarmann ◽  
LCDR Johna Rossetti

ABSTRACT ID: 2017-101 – GIUEs: Developing Best Practices to Improve Marine Environmental Response Preparedness The U.S. Coast Guard (USCG) is authorized by the Oil Pollution Act (OPA) of 1990 to conduct Government Initiated Unannounced Exercises (GIUE), a cornerstone of the oil spill exercise cycle. These exercises are instrumental for USCG Captains of the Port (COTP) to evaluate industry preparedness for oil spill response by specifically testing a facility or vessel on notification procedures, response time, and deployment of facility-owned or Oil Spill Removal Organization (OSRO) equipment. Facility Response Plan holders and Vessel Response Plan holders are subject to these exercises under federal regulations 33 C.F.R. § 154 and § 155. In 2013, the USCG restructured their GIUE policy to provide better guidance for employees. This updated policy detailed how to properly plan and conduct a GIUE as well as established expectations following both satisfactory and unsatisfactory exercises. In this paper we will examine the changes that the USCG has made regarding its policy on planning and conducting GIUEs, describe how USCG field units are implementing the new policy, including how unsatisfactory GIUEs are addressed, and examine what commonalities, are being seen in GIUE unsatisfactory results. Finally, we will discuss how plan holders, OSROs, and regulatory agencies can work together to better prepare for responding to an environmental emergency when it occurs.


2003 ◽  
Vol 2003 (1) ◽  
pp. 153-159 ◽  
Author(s):  
James E. Elliott

ABSTRACT Oil spill response personnel encounter commercial diving operations during salvage and pollution response operations. During an oil spill or hazardous substance release, the National Contingency Plan requires that response operations, including commercial diving operations, be conducted in accordance with the requirements, standards, and regulations of the Occupational Safety and Health Administration. Additionally, the Coast Guard requires that commercial diving contractors meet their own commercial diving regulations (46 CFR 197) during response operations. Incident commanders and safety officers should ensure that an inspection of the on-site diving operation is conducted to confirm that commercial diving personnel, operations, and equipment meet the applicable regulations. This technical paper provides guidance to response personnel on the inspection of commercial diving operations during marine response operations and an overview of the equipment used to protect divers in contaminated waters. Additionally, this guidance provides checklists to facilitate the inspection of commercial diving operations to protect the health and safety of commercial divers.


1997 ◽  
Vol 1997 (1) ◽  
pp. 737-742
Author(s):  
LT Tina M. Burke ◽  
LT John P. Flynn

ABSTRACT In recent years, the usefulness of the incident command system (ICS) has received much attention. Much of the oil industry and several government agencies involved in all types of emergency response have been using ICS for many years. In addition, the U.S. Coast Guard formally adopted the national interagency incident management system (NIIMS) ICS as the response management system of choice in February of 1996. The response to the tank barge North Cape grounding was a complex multiagency effort that brought with it many of the issues and problems responders face when dealing with crisis situations. This paper describes the ICS-based organization that was established to respond to the major North Cape oil spill, analyzes the organization compared to standard ICS, and discusses how the ICS framework and principles contributed to the success of the response. It also explains how closer conformity to standard ICS could have remedied many of the issues that later surfaced as lessons learned, resulting in improved response efficiency. The North Cape response provides a vivid example of how ICS is a helpful management tool that, if rigorously learned and applied in a widespread fashion, can greatly enhance the nation's oil spill response posture.


Sign in / Sign up

Export Citation Format

Share Document