scholarly journals Outline and Activities of Test Facility at Collaborative Laboratories for Advanced Decommissioning Science, Japan Atomic Energy Agency

2018 ◽  
Vol 36 (7) ◽  
pp. 464-467
Author(s):  
Yasuaki Miyamoto
Author(s):  
Fumihiko Kanayama

The Japan Atomic Energy Research Institute Reprocessing Test Facility (JRTF) was the first reprocessing facility which was constructed by applying only Japanese technology to establish basic technology on wet reprocessing. JRTF had been operated since 1968 to 1969 using spent fuels (uranium metal/aluminum clad, about 600kg as uranium metal and 600MWD/T) from the Japan Research Reactor No.3 (JRR-3). Reprocessing testings on PUREX process were implemented at 3 runs, so that, 200g of plutonium dioxide were extracted. After JRTF was shut down at 1970, it had been used for research and development of reprocessing since 1971. The more mature research and development of nuclear are, the more opportunity of dismantling of old nuclear facilities would be. Japan Atomic Energy Agency (JAEA) has an experience of full scale of dismantling through decommissioning of Japan Power Demonstration Reactor (JPDR)1). On the other hand, we didn’t have that of fuel cycle facility. Moreover, it is considered that dismantling methods of nuclear reactor and fuel cycle facility are different for following reason, components contaminated TRU nuclide including Pu, and components installed inside narrow cells. Dismantling methods are important factor to decide manpower and time for dismantling. So, it is indispensable to optimize dismantling method in order to minimize manpower and time for dismantling. Considering the background mentioned above, the decommissioning project of JRTF was started in 1990. The decommissioning project of JRTF is carried out phase by phase. Phase 1; Investigation for dismantling of the JRTF2)3)4). Phase 2; R&D of decommissioning technologies for dismantling of the JRTF5)6)7)8). Phase 3; Actual dismantling of the JRTF9)10). There were several components used for reprocessing and a system for liquid radwaste storage, and those were installed inside of each of several thick concrete cells. The inner surfaces of each cell were contaminated by TRU nuclides including Pu. In phase 3, components used in reprocessing and a system for liquid radwaste storage were dismantled. Moreover, opening was made in concrete walls (including ceiling) for this work. Effective practices for dismantling fuel cycle facilities were obtained through these works. On this report, effective dismantle methods obtained by actual dismantling activities in JRTF are introduced.


2010 ◽  
Vol 66 (a1) ◽  
pp. s121-s121
Author(s):  
Taro Tamada ◽  
Kazuo Kurihara ◽  
Takashi Ohhara ◽  
Nobuo Okazaki ◽  
Ryota Kuroki

2016 ◽  
Vol 87 (2) ◽  
pp. 02B322 ◽  
Author(s):  
M. Hanada ◽  
A. Kojima ◽  
H. Tobari ◽  
R. Nishikiori ◽  
J. Hiratsuka ◽  
...  

2012 ◽  
Vol 45 (3) ◽  
pp. 507-512 ◽  
Author(s):  
Hiroki Iwase ◽  
Masaki Katagiri ◽  
Mitsuhiro Shibayama

This study involves the upgrade of a high-resolution position-sensitive detector (HR-PSD) installed on the small-angle neutron scattering spectrometer (SANS-U) at the Japan Atomic Energy Agency. By using both neutron lenses and the HR-PSD, the accessible low-Qlimit can be extended to the order of 10−4 Å−1[Qis the magnitude of the scattering vector defined byQ= (4π/λ)sinθ, where λ and 2θ are the wavelength and the scattering angle, respectively]. The HR-PSD consists of a cross-wired position-sensitive photomultiplier tube (PSPMT) and a commercial ZnS/6LiF scintillator. To improve the experimental efficiency of focusing small-angle neutron scattering (FSANS) experiments, a high-performance ZnS/6LiF scintillator developed at the Japan Atomic Energy Agency has been utilized. For the PSPMT and data-acquisition system installed on SANS-U, the thickness of the ZnS/6LiF scintillator was optimized by measuring the thickness dependence of the pulse-height spectra. Under the experimental conditions of SANS-U, the optimum thickness of the ZnS/6LiF scintillator (ZnS:6LiF = 2:1) was determined to be 0.433 mm by measuring the total counts and peak positions of the pulse-height spectra. Installation of the optimized ZnS/6LiF scintillator improved detection efficiency by 1.39 times over that of a commercial scintillator at the same level of background counts andQresolution in FSANS experiments.


2015 ◽  
Vol 25 (03n04) ◽  
pp. 147-152 ◽  
Author(s):  
Takahiro Satoh

A new micro-particle induced X-ray emission-computed tomography (PIXE-CT) system was developed at Takasaki Ion Accelerators for Advanced Radiation Application in Japan Atomic Energy Agency. In this system, scanning transmission ion microscopy-CT was performed as well as PIXE-CT for three-dimensional (3D) measurement of major elements' distributions, which are required for corrections of X-ray yields due to energy losses of projectiles and absorption of X-rays. Moreover, maximum likelihood expectation maximization algorithm has been introduced to image reconstruction because higher spatial resolution can be obtained even with less X-ray yields. Consequently, 3D distribution of trace elements in a minute biological cell less than 100 μm has been successfully obtained.


Sign in / Sign up

Export Citation Format

Share Document