scholarly journals Effect of the root system of Kentucky bluegrass (Poa pratensis L.) on shear strength of finegrained soil.

2018 ◽  
Vol 44 (1) ◽  
pp. 15-20
Author(s):  
SONG Baiyang ◽  
NAKAMURA Dai ◽  
KAWAGUCHI Takayuki ◽  
KAWAJIRI Shunzo ◽  
YAMAGUCHI Kohei ◽  
...  
2000 ◽  
Vol 77 (11) ◽  
pp. 1641-1647 ◽  
Author(s):  
Bret E Olson ◽  
Roseann T Wallander

Weeds increase their dominance in a grazed plant community by avoiding herbivory and (or) by tolerating herbivory more than neighbouring plants. After defoliation, allocating carbon to shoots at the expense of roots may confer tolerance. We determined carbon allocation patterns of undefoliated and recently defoliated (75% clipping level) plants of the invasive leafy spurge (Euphorbia esula L.) growing with alfalfa (Medicago sativa L.), Kentucky bluegrass (Poa pratensis L.), or Idaho fescue (Festuca idahoensis Elmer). Plants were labeled with 13CO2 24 h after clipping to determine allocation patterns; all plants had equal access to the 13CO2. Based on relative distribution of 13C, defoliation did not affect the amount of carbon allocated to roots of E. esula. The amount of carbon allocated to shoots of E. esula was higher when growing with P. pratensis than when growing with the other species. Based on relative enrichment of 13C, defoliation increased sink strength of remaining shoots on defoliated E. esula plants. Conversely, roots of unclipped E. esula plants were stronger sinks for carbon than roots of clipped plants. Even though defoliation increased "sink strength" of remaining shoots of E. esula, the amount of carbon allocated to the root system was unaffected by defoliation, suggesting that uninterrupted allocation of carbon to its extensive root system, not increased allocation to its shoot system, confers grazing tolerance.


HortScience ◽  
2015 ◽  
Vol 50 (8) ◽  
pp. 1248-1251
Author(s):  
Karl Guillard ◽  
Richard J.M. Fitzpatrick ◽  
Holly Burdett

Adequate turfgrass sod strength for harvesting and handling is typically determined by the producer’s past experience and subjective appraisal. This study was conducted to determine the relationship between producer subjective sod-strength assessments and quantitative shear-strength measurements with predominantly kentucky bluegrass (Poa pratensis L.) turf. Across three consecutive growing seasons, 93 samples were collected from sod fields in Rhode Island and assessed for sod strength by subjective and quantitative methods. Producer subjective ratings of sod strength were significantly (P < 0.0001) associated with quantitative measurements of peak force required to shear a sod strip. Minimally acceptable strength occurred most frequently when peak shear force was between 55 and 85 kg·m−1 width of sod; whereas preferred sod strength occurred most frequently when peak shear force was between 70 and 140 kg·m−1 width of sod. Once peak force exceeded 58 and 86 kg·m−1, there was a > 50% probability that sod strength would be judged at least adequate and at preferred strength, respectively, up to a peak force of 140 kg·m−1. The results suggest that quantitative measurements of shear strength can be related to producer subjective assessments, and provide unbiased benchmark values to guide management decisions for kentucky bluegrass sod production.


2010 ◽  
Vol 20 (5) ◽  
pp. 867-872 ◽  
Author(s):  
Alexander R. Kowalewski ◽  
John N. Rogers ◽  
James R. Crum ◽  
Jeffrey C. Dunne

Drain tile installation into a native-soil athletic field and subsequent sand topdressing applications are cost-effective alternatives to complete field renovation. However, if cumulative topdressing rates exceed root system development, surface stability may be compromised. The objective of this research was to evaluate the effects of cumulative topdressing, over a compacted sandy loam soil, on the fall wear tolerance and surface shear strength of a kentucky bluegrass (Poa pratensis)–perennial ryegrass (Lolium perenne) stand. Research was initiated in East Lansing, MI, on 10 Apr. 2007. A well-graded, high-sand-content root zone (90.0% sand, 7.0% silt, and 3.0% clay) was topdressed at a 0.25-inch depth [2.0 lb/ft2 (dry weight)] per application, providing cumulative topdressing depths of 0.0, 0.5, 1.0, 1.5, or 2.0 inches applied from 11 July to 15 Aug. 2007. Fall traffic was applied twice weekly to all treatments from 10 Oct. to 3 Nov. 2007. In 2008, topdressing applications and traffic, as described earlier, were repeated on the same experimental plots. Results obtained from this research suggest that the 0.5-inch topdressing depth applied over a 5-week period in the summer will provide improved shoot density and surface shear strength in the subsequent fall. Results also suggest that topdressing rates as thick as 4.0 inches accumulated over a 2-year period will provide increased shoot density, but diminished surface shear strength.


1979 ◽  
Vol 25 (10) ◽  
pp. 1197-1200 ◽  
Author(s):  
R. C. Shearman ◽  
W. L. Pedersen ◽  
R. V. Klucas ◽  
E. J. Kinbacher

Associative nitrogen fixation in Kentucky bluegrass (Poa pratensis L.) turfs inoculated with five nitrogen-fixing bacterial isolates was evaluated using the acetylene reduction assay and nitrogen accumulation as indicators of fixation. 'Park' and 'Nugget' Kentucky bluegrass turfs were grown in controlled environment chambers and inoculated with Klebsiella pneumoniae (W-2, W-6, and W-14), Erwinia herbicola (W-8), and Enterobacter cloacae (W-11). 'Park' inoculated with K. pneumoniae (W-6) had significant acetylene reduction activity using undisturbed turfs. Other treatments including turfs treated with heat-killed cells had no significant difference in acetylene reduction. In a second study, 'Park' and 'South Dakota Certified' turfs were grown in a greenhouse and inoculated with K. pneumoniae (W-6) and E. herbicola (W-8). 'Park' inoculated with K. pneumoniae (W-6) had increased acetylene reduction activity rates and also a greater nitrogen accumulation in aerial tissues when compared to controls. Acetylene reduction activity was correlated (r = 0.92) to nitrogen accumulation. Other treatments did not effectively increase acetylene reduction activity or nitrogen accumulation.


1981 ◽  
Vol 27 (1) ◽  
pp. 52-56 ◽  
Author(s):  
L. V. Wood ◽  
R. V. Klucas ◽  
R. C. Shearman

Turfs of 'Park' Kentucky bluegrass reestablished in the greenhouse and inoculated with Klebsiella pneumoniae (W6) showed significantly increased nitrogen fixation (acetylene reduction) compared with control turfs. Mean ethylene production rates per pot were 368 nmol h−1 for K. pneumoniae treated turfs, 55 nmol h−1 for heat-killed K. pneumoniae treated turfs, and 44 nmol h−1 for untreated turfs. Calculated lag periods before activity was observed were generally very short (less than 1 h).When 'Park' Kentucky bluegrass was grown from seed on soil-less medium of Turface, a fired aggregate clay, inoculation with K. pneumoniae (W6) resulted in 9 of 11 turfs showing nitrogenase activity (mean ethylene producion rate per pot was 195 nmol h−1). Only 3 of 11 turfs treated with heat-killed K. pneumoniae showed any activity and their mean rate of ethylene production (40 nmol h−1 per pot) was significantly lower than that for turfs treated with K. pneumoniae.Using the 'Park'–Turface soil-less model system it was shown that acetylene reducing activity was (i) root associated, (ii) generally highest at a depth of 1–4 cm below the surface, (iii) enhanced by washing excised roots, and (iv) inhibited by surface sterilization of excised roots. Klebsiella pneumoniae was recovered from Turface and roots showing acetylene reducing activity.


1979 ◽  
Vol 59 (2) ◽  
pp. 469-473 ◽  
Author(s):  
R. G. INGRATTA ◽  
G. R. STEPHENSON ◽  
C. M. SWITZER

Optimum top growth of annual bluegrass (Pao annua L.) and Kentucky bluegrass (Poa pratensis L.) was obtained at 24/12 °C day/night temperature regime in controlled environment studies. The tolerance of seedling Kentucky bluegrass to linuron [3-(3,4-dichlorophenyl)-1)methylurea] appeared to be greatest at this temperature regime when photoperiods were 16 h in length. A granular formulation of linuron gave excellent control of annual bluegrass in Kentucky bluegrass turf at 6.7 kg/ha when applied postemergence. At this rate, all culitivars of Kentucky bluegrass tested, with the exception of Fylking, were tolerant to linuron as a granular formulation. After application of linuron at 3.4–6.7 kg/ha, phytotoxic residues remained in the soil at sufficient levels to injure seedling Kentucky bluegrass for up to 3 mo.


Sign in / Sign up

Export Citation Format

Share Document