Alternative tactile sensor for measuring rehabilitation study using to neural network

Author(s):  
Seung-Cheol Lim ◽  
Go-Whan Jin
2005 ◽  
Vol 02 (03) ◽  
pp. 181-190 ◽  
Author(s):  
SEIJI AOYAGI ◽  
TAKAAKI TANAKA ◽  
KENJI MAKIHIRA

In this paper, a force sensing element having a pillar and a diaphragm is proposed and thereafter fabricated by micromachining. Piezo resistors are fabricated on a silicon diaphragm for detecting distortions caused by a force input to a pillar on the diaphragm. Since a practical arrayed sensor consisting of many of this element is still under development, the output of an assumed arrayed type tactile sensor is simulated by FEM (finite element method). Using simulated data, the possibility of tactile pattern recognition using a neural network (NN) is investigated. The learning method of NN, the number of units of the input layer and the hidden layer, as well as the number of training data are investigated for realizing high probability of recognition. The 14 subjects having different shape and size are recognized. This recognition succeeded even if the contact position and the rotation angle of these objects are changed.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 583
Author(s):  
Weiting Liu ◽  
Binpeng Zhan ◽  
Chunxin Gu ◽  
Ping Yu ◽  
Guoshi Zhang ◽  
...  

Object curvature plays an important role in grasping and manipulation. To be more exact, local curvature is a more useful information for grasping practically. Vision and touch are the two main methods to extract surface curvature of an object, but vision is often limited since the complete contact area is invisible during manipulation. In this paper, the authors propose an object curvature estimation method based on an artificial neural network algorithm through a lab-developed sparse tactile sensor array. The compliant layer covering on the sensor is indispensable for fitting the curved surface. Three types (plane, convex sphere, and convex cylinder) of sample and each type of sample including 30 different radiuses (1 mm to 30 mm) were used in the experiment. The overall classification accuracy was 93.1%. The average curvature radius estimating error based on an artificial neural network (ANN) algorithm was 1.87 mm. When the radius of curvature was bigger than 5 mm, the average relative error was smaller than 20%. As a comparison, the sensor array density we used in this paper was less than 9/cm2, which was smaller than the density of human SAII receptors, but the discrimination result was close to the SAII receptors. Comparison with the curvature discrimination ability of the human body showed that this method has a promising application prospect.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1537
Author(s):  
Xingxing Zhang ◽  
Shaobo Li ◽  
Jing Yang ◽  
Qiang Bai ◽  
Yang Wang ◽  
...  

In order to improve the accuracy of manipulator operation, it is necessary to install a tactile sensor on the manipulator to obtain tactile information and accurately classify a target. However, with the increase in the uncertainty and complexity of tactile sensing data characteristics, and the continuous development of tactile sensors, typical machine-learning algorithms often cannot solve the problem of target classification of pure tactile data. Here, we propose a new model by combining a convolutional neural network and a residual network, named ResNet10-v1. We optimized the convolutional kernel, hyperparameters, and loss function of the model, and further improved the accuracy of target classification through the K-means clustering method. We verified the feasibility and effectiveness of the proposed method through a large number of experiments. We expect to further improve the generalization ability of this method and provide an important reference for the research in the field of tactile perception classification.


Sign in / Sign up

Export Citation Format

Share Document