scholarly journals Discrimination of Object Curvature Based on a Sparse Tactile Sensor Array

Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 583
Author(s):  
Weiting Liu ◽  
Binpeng Zhan ◽  
Chunxin Gu ◽  
Ping Yu ◽  
Guoshi Zhang ◽  
...  

Object curvature plays an important role in grasping and manipulation. To be more exact, local curvature is a more useful information for grasping practically. Vision and touch are the two main methods to extract surface curvature of an object, but vision is often limited since the complete contact area is invisible during manipulation. In this paper, the authors propose an object curvature estimation method based on an artificial neural network algorithm through a lab-developed sparse tactile sensor array. The compliant layer covering on the sensor is indispensable for fitting the curved surface. Three types (plane, convex sphere, and convex cylinder) of sample and each type of sample including 30 different radiuses (1 mm to 30 mm) were used in the experiment. The overall classification accuracy was 93.1%. The average curvature radius estimating error based on an artificial neural network (ANN) algorithm was 1.87 mm. When the radius of curvature was bigger than 5 mm, the average relative error was smaller than 20%. As a comparison, the sensor array density we used in this paper was less than 9/cm2, which was smaller than the density of human SAII receptors, but the discrimination result was close to the SAII receptors. Comparison with the curvature discrimination ability of the human body showed that this method has a promising application prospect.

2004 ◽  
Vol 67 (8) ◽  
pp. 1604-1609 ◽  
Author(s):  
UBONRATANA SIRIPATRAWAN ◽  
JOHN E. LINZ ◽  
BRUCE R. HARTE

An electronic sensor array with 12 nonspecific metal oxide sensors was evaluated for its ability to monitor volatile compounds in super broth alone and in super broth inoculated with Escherichia coli (ATCC 25922) at 37°C for 2 to 12 h. Using discriminant function analysis, it was possible to differentiate super broth alone from that containing E. coli when cell numbers were 105 CFU or more. There was a good agreement between the volatile profiles from the electronic sensor array and a gas chromatography–mass spectrometer method. The potential to predict the number of E. coli and the concentration of specific metabolic compounds was investigated using an artificial neural network (ANN). The artificial neural network was composed of an input layer, one hidden layer, and an output layer, with a hyperbolic tangent sigmoidal transfer function in the hidden layer and a linear transfer function in the output layer. Good prediction was found as measured by a regression coefficient (R2 = 0.999) between actual and predicted data.


2020 ◽  
Vol MA2020-01 (26) ◽  
pp. 1856-1856
Author(s):  
Yu-Chieh Cheng ◽  
Ting-I Chou ◽  
Jye-Luen Lee ◽  
Shih-Wen Chiu ◽  
Kea Tiong Tang

Sign in / Sign up

Export Citation Format

Share Document