scholarly journals Convection excitation in a system of a binary solution layer and an inhomogeneous porous medium layer in the field of high-frequency vibrations

2017 ◽  
Vol 10 (1) ◽  
pp. 53-69 ◽  
Author(s):  
E.A. Kolchanova ◽  
N.V. Kolchanov
Author(s):  
S. R. Rakhmanov

In some cases, the processes of piercing or expanding pipe blanks involve the use of high-frequency active vibrations. However, due to insufficient knowledge, these processes are not widely used in the practice of seamless pipes production. In particular, the problems of increasing the efficiency of the processes of piercing or expanding a pipe blank at a piercing press using high-frequency vibrations are being solved without proper research and, as a rule, by experiments. The elaboration of modern technological processes for the production of seamless pipes using high-frequency vibrations is directly related to the choice of rational modes of metal deformation and the prediction resistance indicators of technological tools and the reliability of equipment operation. The creation of a mathematical model of the process of vibrating piercing (expansion) of an axisymmetric pipe blank at a piercing press of a pipe press facility is an actual task. A calculation scheme for the process of piercing a pipe plank has been elaborated. A dependence was obtained characterizing the speed of front of plastic deformation propagation on the speed of penetration of a vibrated axisymmetric mandrel into the pipe workpiece being pierced. The dynamic characteristics of the occurrence of wave phenomena in the metal being pierced under the influence of a vibrated tool have been determined, which significantly complements the previously known ideas about the stress-strain state of the metal in the deformation zone. The deformation fields in the zones of the disturbed region of the deformation zone were established, taking into account the high-frequency vibrations of the technological tool. It has been established that the choice of rational parameters (amplitude-frequency characteristics) of the vibration piercing process of a pipe blank results in significant increase in the efficiency of the process, the durability of the technological tool and the quality of the pierced blanks.


2016 ◽  
Vol 32 (3) ◽  
pp. 297-311
Author(s):  
T.-Y. Zhao ◽  
H.-Q. Yuan ◽  
B.-B. Li ◽  
Z.-J. Li ◽  
L.-M. Liu

AbstractThe analysis method is developed to obtain dynamic characteristics of the rotating cantilever plate with thermal shock and tip-rub. Based on the variational principle, equations of motion are derived considering the differences between rubbing forces in the width direction of the plate. The transverse deformation is decomposed into quasi-static deformation of the cantilever plate with thermal shock and dynamic deformation of the rubbing plate under thermal shock. Then deformations are obtained through the calculation of modal characteristics of rotating cantilever plate and temperature distribution function. Special attention is paid to the influence of tip-rub and thermal shock on the plate. The results show that tip-rub has the characteristics of multiple frequency vibrations, and high frequency vibrations are significant. On the contrary, thermal shock shows the low frequency vibrations. The thermal shock makes the rubbing plate gradually change into low frequency vibrations. Because rub-induced vibrations are more complicated than those caused by thermal shock, tip-rub is easier to result in the destruction of the blade. The increasing friction coefficient intensifies vibrations of the rubbing plate. Minimizing friction coefficients can be an effective way to reduce rub-induced damage through reducing the surface roughness between the blade tip and the inner surface of the casing.


2013 ◽  
Vol 341 (4-5) ◽  
pp. 477-482 ◽  
Author(s):  
Sergey M. Ishutov ◽  
Bela I. Myznikova ◽  
Boris L. Smorodin

2013 ◽  
Vol 113 (11) ◽  
pp. 2871-2871 ◽  
Author(s):  
Pierpaolo Iodice ◽  
Rosa Grazia Bellomo ◽  
Glaugo Gialluca ◽  
Giorgio Fanò ◽  
Raoul Saggini

Sign in / Sign up

Export Citation Format

Share Document