scholarly journals Fast Probabilistic Neuro-Fuzzy System for Pattern Classification Task

2020 ◽  
Vol 23 ◽  
pp. 12-16
Author(s):  
Yevgeniy Bodyanskiy ◽  
Anastasiia Deineko ◽  
Irina Pliss ◽  
Olha Chala

The probabilistic neuro-fuzzy system to solve the image classification-recognition task is proposed. The considered system is a “hybrid” of Specht’s probabilistic neural network and the neuro-fuzzy system of Takagi-Sugeno-Kang. It is designed to solve tasks in case of overlapping classes. Also, it is supposed that the initial data that are fed on the input of the system can be represented in numerical, rank, and nominal (binary) scales. The tuning of the network is implemented with the modified procedure of lazy learning based on the concept “neurons at data points”. Such a learning approach allows substantially reducing the consumption of time and does not require large amounts of training dataset. The proposed system is easy in computational implementation and characterised by a high classification speed, as well as allows processing information both in batch and online mode.

2021 ◽  
Vol 24 ◽  
pp. 39-44
Author(s):  
Olha Chala ◽  
Yevgeniy Bodyanskiy

The paper proposes a 2D-hybrid system of computational intelligence, which is based on the generalized neo-fuzzy neuron. The system is characterised by high approximate abilities, simple computational implementation, and high learning speed. The characteristic property of the proposed system is that on its input the signal is fed not in the traditional vector form, but in the image-matrix form. Such an approach allows getting rid of additional convolution-pooling layers that are used in deep neural networks as an encoder. The main elements of the proposed system are a fuzzified multidimensional bilinear model, additional softmax layer, and multidimensional generalized neo-fuzzy neuron tuning with cross-entropy criterion. Compared to deep neural systems, the proposed matrix neo-fuzzy system contains gradually fewer tuning parameters – synaptic weights. The usage of the time-optimal algorithm for tuning synaptic weights allows implementing learning in an online mode.


2019 ◽  
Vol 50 (4) ◽  
pp. 991-1001 ◽  
Author(s):  
Mohammad Ashrafi ◽  
Lloyd H. C. Chua ◽  
Chai Quek

Abstract Recent advancements in neuro-fuzzy models (NFMs) have made possible the implementation of dynamic rule base systems. This is in comparison with static applications commonly seen in global NFMs such as the Adaptive-Network-Based Fuzzy Inference System (ANFIS) model widely used in hydrological modeling. This study underlines key differences between local and global NFMs with an emphasis on rule base dynamics, in the context of two common flow forecast applications. A global NFM, ANFIS, and two local NFMs, Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) and Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK), were tested. Results from all NFMs compared favorably when benchmarked against physically based models. Rainfall–runoff modeling is a complex process which benefits from the advanced rule generation and pruning mechanisms in GSETSK, resulting in a more compact rule base. Although ANFIS resulted in the same number of rules, this came about at the expense of having the need for a large training dataset. All NFMs generated a similar number of rules for the river routing application, although local NFMs yielded better results for forecasts at longer lead times. This is attributed to the fact that the routing procedure is less complex and can be adequately modeled by static NFMs.


2005 ◽  
Vol 2 (1) ◽  
pp. 12
Author(s):  
E. A. Al-Gallaf

This article investigates the use of a clustered based neuro-fuzzy system to nonlinear dynamic system modeling. It is focused on the modeling via Takagi-Sugeno (T-S) modeling procedure and the employment of fuzzy clustering to generate suitable initial membership functions. The T-S fuzzy modeling has been applied to model a nonlinear antenna dynamic system with two coupled inputs and outputs. Compared to other well-known approximation techniques such as artificial neural networks, the employed neuro-fuzzy system has provided a more transparent representation of the nonlinear antenna system under study, mainly due to the possible linguistic interpretation in the form of rules. Created initial memberships are then employed to construct suitable T-S models. Furthermore, the T-S fuzzy models have been validated and checked through the use of some standard model validation techniques (like the correlation functions). This intelligent modeling scheme is very useful once making complicated systems linguistically transparent in terms of the fuzzy if-then rules. 


2017 ◽  
pp. 34-40
Author(s):  
Iryna Perova ◽  
Yevgeniy Bodyanskiy

This paper proposes an architecture of fast medical diagnostics system based on autoassociative neuro-fuzzy memory. The architecture of proposed system is close to traditional Takagi-Sugeno-Kang neuro-fuzzy system, but it is based on other principles. This system contains of recording subsystem and pattern retrieval subsystem, where diagnostics of patients with unknown diagnoses is realized. Level of memberships for all other possible diagnoses from recording subsystem is determined too. System tuning is based on lazy learning procedure and “neurons in data points” principle and uses bell-shaped fuzzy basis functions. Number of these functions changes during training process using principles of evolving connectionist systems. Bell-shaped membership functions centers can be tuned using proposed algorithm, processes of accumulation patients in fundamental memory and patients retrieval are described. This hybrid neuro-fuzzy associative memory combines advantages of fuzzy inference systems, artificial neural networks and evolving systems and its using provides the increasing of autoassociative memories capacity without essential complication of its architecture for medical diagnostics tasks.


Author(s):  
Chawalsak Phetchanchai ◽  
Chuthawuth Chantaramalee ◽  
Napatsarun Chatchawalanont ◽  
Piyapong Phatcha

Objective - This research aims to propose the approach of forecasting tourist arrivals to Thailand. Methodology/Technique – Adaptive Neuro-Fuzzy Inference System (ANFIS) was used as our forecasting method by using fuzzy C-means clustering as a technique for the partitioning training dataset Findings - The appropriate parameter of time lag was found for each dataset of East Asian tourist arrivals to Thailand. Novelty - The forecasting procedure with the appropriate parameter of time lag was represented our work as a novelty idea. Type of Paper: Empirical. Keywords: Tourist arrivals forecasting, East Asian countries, adaptive neuro-fuzzy inference system, fuzzy C-means clustering, Takagi–Sugeno fuzzy inference system.


2005 ◽  
Vol 15 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Amitava Chatterjee ◽  
Keigo Watanabe

2017 ◽  
Vol 10 (2) ◽  
pp. 166-182 ◽  
Author(s):  
Shabia Shabir Khan ◽  
S.M.K. Quadri

Purpose As far as the treatment of most complex issues in the design is concerned, approaches based on classical artificial intelligence are inferior compared to the ones based on computational intelligence, particularly this involves dealing with vagueness, multi-objectivity and good amount of possible solutions. In practical applications, computational techniques have given best results and the research in this field is continuously growing. The purpose of this paper is to search for a general and effective intelligent tool for prediction of patient survival after surgery. The present study involves the construction of such intelligent computational models using different configurations, including data partitioning techniques that have been experimentally evaluated by applying them over realistic medical data set for the prediction of survival in pancreatic cancer patients. Design/methodology/approach On the basis of the experiments and research performed over the data belonging to various fields using different intelligent tools, the authors infer that combining or integrating the qualification aspects of fuzzy inference system and quantification aspects of artificial neural network can prove an efficient and better model for prediction. The authors have constructed three soft computing-based adaptive neuro-fuzzy inference system (ANFIS) models with different configurations and data partitioning techniques with an aim to search capable predictive tools that could deal with nonlinear and complex data. After evaluating the models over three shuffles of data (training set, test set and full set), the performances were compared in order to find the best design for prediction of patient survival after surgery. The construction and implementation of models have been performed using MATLAB simulator. Findings On applying the hybrid intelligent neuro-fuzzy models with different configurations, the authors were able to find its advantage in predicting the survival of patients with pancreatic cancer. Experimental results and comparison between the constructed models conclude that ANFIS with Fuzzy C-means (FCM) partitioning model provides better accuracy in predicting the class with lowest mean square error (MSE) value. Apart from MSE value, other evaluation measure values for FCM partitioning prove to be better than the rest of the models. Therefore, the results demonstrate that the model can be applied to other biomedicine and engineering fields dealing with different complex issues related to imprecision and uncertainty. Originality/value The originality of paper includes framework showing two-way flow for fuzzy system construction which is further used by the authors in designing the three simulation models with different configurations, including the partitioning methods for prediction of patient survival after surgery. Several experiments were carried out using different shuffles of data to validate the parameters of the model. The performances of the models were compared using various evaluation measures such as MSE.


Sign in / Sign up

Export Citation Format

Share Document