Forecasting East Asian Tourist Arrivals to Thailand with Adaptive Neuro-Fuzzy Inference System

Author(s):  
Chawalsak Phetchanchai ◽  
Chuthawuth Chantaramalee ◽  
Napatsarun Chatchawalanont ◽  
Piyapong Phatcha

Objective - This research aims to propose the approach of forecasting tourist arrivals to Thailand. Methodology/Technique – Adaptive Neuro-Fuzzy Inference System (ANFIS) was used as our forecasting method by using fuzzy C-means clustering as a technique for the partitioning training dataset Findings - The appropriate parameter of time lag was found for each dataset of East Asian tourist arrivals to Thailand. Novelty - The forecasting procedure with the appropriate parameter of time lag was represented our work as a novelty idea. Type of Paper: Empirical. Keywords: Tourist arrivals forecasting, East Asian countries, adaptive neuro-fuzzy inference system, fuzzy C-means clustering, Takagi–Sugeno fuzzy inference system.

2019 ◽  
Vol 50 (4) ◽  
pp. 991-1001 ◽  
Author(s):  
Mohammad Ashrafi ◽  
Lloyd H. C. Chua ◽  
Chai Quek

Abstract Recent advancements in neuro-fuzzy models (NFMs) have made possible the implementation of dynamic rule base systems. This is in comparison with static applications commonly seen in global NFMs such as the Adaptive-Network-Based Fuzzy Inference System (ANFIS) model widely used in hydrological modeling. This study underlines key differences between local and global NFMs with an emphasis on rule base dynamics, in the context of two common flow forecast applications. A global NFM, ANFIS, and two local NFMs, Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) and Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK), were tested. Results from all NFMs compared favorably when benchmarked against physically based models. Rainfall–runoff modeling is a complex process which benefits from the advanced rule generation and pruning mechanisms in GSETSK, resulting in a more compact rule base. Although ANFIS resulted in the same number of rules, this came about at the expense of having the need for a large training dataset. All NFMs generated a similar number of rules for the river routing application, although local NFMs yielded better results for forecasts at longer lead times. This is attributed to the fact that the routing procedure is less complex and can be adequately modeled by static NFMs.


Author(s):  
P. Akhavan ◽  
M. Karimi ◽  
P. Pahlavani

Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.


Author(s):  
Jani Kusanti ◽  
Sri Hartati

AbstrakPenggunaan metode Adaptive Neuro Fuzzy Inference System (ANFIS) dalam proses identifikasi salah satu gangguan neurologis pada bagian kepala yang dikenal dalam istilah kedokteran stroke ischemic dari hasil ct scan kepala dengan tujuan untuk mengidentifikasi lokasi  yang terkena stroke ischemik. Langkah-langkah yang dilakukan dalam proses identifikasi antara lain ekstraksi citra hasil ct scan kepala dengan menggunakan histogram. Citra hasil proses histogram ditingkatkan intensitas hasil citranya dengan menggunakan threshold otsu sehingga didapatkan hasil pixel yang diberi nilai 1 berkaitan dengan obyek sedangkan pixel yang diberi nilai 0 berkaitan dengan background. Hasil pengukuran digunakan untuk proses clustering image, untuk proses cluster image digunakan fuzzy c-mean (FCM). Hasil clustering merupakan deretan pusat cluster, hasil  data digunakan untuk membangun fuzzy inference system (FIS). Sistem inferensi fuzzy yang diterapkan adalah inferensi fuzzy model Takagi-Sugeno-Kang. Dalam penelitian ini ANFIS digunakan untuk mengoptimalkan hasil penentuan lokasi penyumbatan stroke ischemic. Digunakan recursive least square estimator (RLSE) untuk pembelajaran. Hasil RMSE yang didapat pada proses pelatihan sebesar 0.0432053, sedangkan pada proses pengujian dihasilkan tingkat akurasi sebesar 98,66% Kata kunci—stroke ischemik, Global threshold, Fuzzy Inference System model Sugeno, ANFIS, RMSE  Abstract            The use of Adaptive Neuro Fuzzy Inference System (ANFIS) methods in the process of identifying one of neurological disorders in the head, known in medical terms ischemic stroke from the ct scan of the head in order to identify the location of ischemic stroke. The steps are performed in the extraction process of identifying, among others, the image of the ct scan of the head by using a histogram. Enhanced image of the intensity histogram image results using Otsu threshold to obtain results pixels rated 1 related to the object while pixel rated 0 associated with the measurement background. The result used for image clustering process, to process image clusters used fuzzy c-mean (FCM) clustering result is a row of the cluster center, the results of the data used to construct a fuzzy inference system (FIS). Fuzzy inference system applied is fuzzy inference model of Takagi-Sugeno-Kang. In this study ANFIS is used to optimize the results of the determination of the location of the blockage ischemic stroke. Used recursive least squares estimator (RLSE) for learning. RMSE results obtained in the training process of 0.0432053, while in the process of generated test accuracy rate of 98.66% Keywords— Stroke Ischemik, Global threshold, Fuzzy Inference System model Sugeno, ANFIS, RMSE 


2017 ◽  
Vol 8 (2) ◽  
pp. 489
Author(s):  
Herliyani Hasanah ◽  
Nurmalitasari Nurmalitasari

Kebutuhan akan energi listrik menjadi kebutuhan primer nasional. Dalam keberlangsungan proses produksi energi listrik pada pembangkitan – pembangkitan diperlukan energi listrik untuk pemakaian sendiri. Dalam penelitian ini dibangun sebuah aplikasi sistem cerdas untuk memprediksi energi listrik pemakaian sendiri di PT Indonesia Power sub unit PLTA Wonogiri. Pada penelitian ini menggunakan 2 kelompok input, yaitu input FIS (Fuzzy Inference System) dan input pada NN (Neuro Fuzzy). Input data  merupakan data produksi harian energi listrik di PLTA Wonogiri selama kurun waktu 2010 – 2016. Variabel data yang digunakan dalam penelitian ini adalah data produksi listrik untuk pemakaian PLTA Wonogiri adalah energi listrik yang dihasilkan PLTA Wonogiri dengan satuan KwH (f), elevasi muka air waduk dengan satuan meter (a1) dan debit air yang masuk ke turbin dengan satuan /detik (a2).  Output yang diperoleh adalah pusat centroid (m), derajat keanggotaan (mf), bobot (w) dan konsekuen parameter ( c ). Dari hasil pengujian diperoleh keluaran dengan performansi yang optimal pada saat Fuzzy C Means 2 kelas dengan parameter laju pembelajaran 0.4, momentum 0.6 dengan bessar Mean Percentage Error 0.377970875.  Kata kunci:  prediksi, pemakaian sendiri, energi listrik, fuzzy inference system, neuro fuzzy


2021 ◽  
Author(s):  
asghar dabiri ◽  
Nader Jafarnia Dabanloo ◽  
Fereidoon Nooshirvan Rahatabad ◽  
Keivan Maghooli

Abstract This paper presents estimation of missed samples recovery of Synthetic electrocardiography (ECG) signals by an ANFIS (Adaptive neuro-fuzzy inference system) method. After designing the ANFIS model using FCM (Fuzzy C Means) clustering method. In MATLAB’s standard library for ANFIS, only least-square-estimation and the back-propagation algorithms are used for tuning membership functions and generation of fis (fuzzy inference system) file, but at current work we have used FCM method that shows better result. Root mean square error (difference of the reference input and the generated data by ANFIS) for the three synthetic data cases are: a. Train data: RMSE = 1.7112e-5b. Test data: RMSE = 5.184e-3c. All data: RMSE = 2.2663e-3


Author(s):  
Candra Dewi

This paper proposes the comparison of using K-Means and Fuzzy C-Means (FCM) to optimize the premise parameters on Adaptive Neuro-Fuzzy Inference System (ANFIS) for weather forecasting. The ANFIS architecture groups each of the feature inputs in the first layer into three clusters, and uses three rules for the second layer. The comparison is performed based on the RMSE value and the number of iteration. The testing is done on the percentage of 40%, 50%, and 60% of the total data. In addition, the testing is done by grouping the data based on season called rainy and dry seasons. The testing results show that both K-Means and FCM havealmost the same RMSE, except for rainy season where K-Means has better RMSE. However, K-Means requires relatively more iterations to achieve convergence. The use of FCM, in general, gives better results than K-Means. It is also shown that ANFIS provides the best performance for data onto the dry season.


Sign in / Sign up

Export Citation Format

Share Document