scholarly journals Age-aware Adaptive Routing for Network-on-Chip Routing with Odd-Even Turn Model

Author(s):  
M. S Saliu ◽  
I. J Umoh ◽  
B.O. Sadiq ◽  
M.O Momoh

This paper presents an age-aware adaptive routing for Odd-Even (OE) turn model. As packets traverse from source to destination node, their paths are defined by a given routing algorithm. For a selected routing algorithm, an efficient arbitration technique is crucial to sharing critical Network-on-Chip resources. Arbitration techniques provide high degree of local fairness from each router point of view. However, there is delay of a packet with a longer path between the source and destination nodes. In order to address this challenge an age-based arbitration technique is hereby proposed for adaptive routing with OE turn model. The age-aware adaptive routing uses an age-based arbitration technique that gives priority to oldest packet. The performance of the developed age-aware adaptive routing was evaluated using different synthetic traffic at different Packet Injection Rates (PIRs). Results were compared with the result obtained on fair arbitration technique for adaptive routing using average latency and throughput as performance metrics. The result indicated that the age-aware adaptive routing has 2.73%, 6.63 %,5.4% and 4.5 % reduction in latency under random, transpose 1 transpose 2 and bit reversal traffic patterns respectively when compared to fair arbitration adaptive routing with OE turn model. For throughput the results indicated that the age-aware adaptive routing with OE turn model has 14.22%, 13%.12% and 19% increase in throughput under random, transpose 1 transpose 2 and bit reversal traffic patterns respectively when compared to fair arbitration adaptive routing with OE turn model.

2011 ◽  
Vol 474-476 ◽  
pp. 413-416
Author(s):  
Jia Jia ◽  
Duan Zhou ◽  
Jian Xian Zhang

In this paper, we propose a novel adaptive routing algorithm to solve the communication congestion problem for Network-on-Chip (NoC). The strategy competing for output ports in both X and Y directions is employed to utilize the output ports of the router sufficiently, and to reduce the transmission latency and improve the throughput. Experimental results show that the proposed algorithm is very effective in relieving the communication congestion, and a reduction in average latency by 45.7% and an improvement in throughput by 44.4% are achieved compared with the deterministic XY routing algorithm and the simple XY adaptive routing algorithm.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 763
Author(s):  
Venkateswara Rao Musala ◽  
T V Rama Krishna

Route specific information with the SoC needs a great deal of wiring, which increases the Resistance & Capacitance (RC) component of the system. Network on Chip (NoC) is utilized as the interface to address the problems in SoC, On-chip interconnection network in NoC has gained more consideration over steadfast wiring and buses, like lower latency, scalability and high performance. Present routing algorithms in NoC is suffered from load balancing at incarnation networks under non-uniform traffic conditions, causes increase the NoC trade-offs (latency and throughput). Adaptive routing is a technique to progress the load balance, but previous adaptive routing techniques used uniform traffic patterns to form the routing decisions. This paper proposes a new approach at non- uniform traffic patterns in channel state and path specific, Path Aware Routing (PAR XY-X) uses a timeout piggybacking for acknowledgement and load shedding to avoid congestion which choose optimistic path calculation unit to connect the destination node without glue logic decisions in routing. PAR XY-X outperforms the Normal XY routing by 20% and 33% with respect to Avg.latency and throughput.


2021 ◽  
Vol 20 (3) ◽  
pp. 1-6
Author(s):  
Mohammed Shaba Saliu ◽  
Muyideen Omuya Momoh ◽  
Pascal Uchenna Chinedu ◽  
Wilson Nwankwo ◽  
Aliu Daniel

Network-on-Chip (NoC) has been proposed as a viable solution to the communication challenges on System-on-Chips (SoCs). As the communication paradigm of SoC, NoCs performance depends mainly on the type of routing algorithm chosen. In this paper different categories of routing algorithms were compared. These include XY routing, OE turn model adaptive routing, DyAD routing and Age-Aware adaptive routing.  By varying the load at different Packet Injection Rate (PIR) under random traffic pattern, comparison was conducted using a 4 × 4 mesh topology. The Noxim simulator, a cycle accurate systemC based simulator was employed. The packets were modeled as a Poisson distribution; first-in-first-out (FIFO) input buffer channel with a depth of five (5) flits and a flit size of 32 bits; and a packet size of 3 flits respectively. The simulation time was 10,000 cycles. The findings showed that the XY routing algorithm performed better when the PIR is low.  In a similar vein, the DyAD routing and Age-aware algorithms performed better when the load i.e. PIR is high.


2018 ◽  
Vol 5 (1) ◽  
pp. 54-57
Author(s):  
Wahyudi Khusnandar ◽  
Fransiscus Ati Halim ◽  
Felix Lokananta

XY adaptive routing protocol is a routing protocol used on UTAR NoC communication architecture. This routing algorithm adapts shrotest-path first algorithm, which will forward will not be able to work optimally if the closest route no longer have enough bandwidth to continue the packet. Packet will be stored inside the router and forwarded to the nearest router when closest route has enough bandwidth. This paper suggest TTL based routing algorithm to resolve this issue. TTL based routing algorithm adapts XY adaptive routing protocol by adding several parameters on RTL UTAR NoC and additional bit in each packet sent by router. This additional bit and parameter will be used by TTL based algorithm as additional factors in choosing alternative routes inside the communication architecture. Use of TTL on TTL based routing different from use of TTL on communication network. Packets that carry TTL value that equal to Maximum TTL will be route using XY adaptive routing protocol. TTL based routing algorithm has shown better performance compared to XY adaptive routing on some of the experiment done using MSCL NoC Traffic Pattern Suite. This research also proves that TTL based routing algorithm cannot work optimally on small-scaled architecture.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 392 ◽  
Author(s):  
Seung Chan Lee ◽  
Tae Hee Han

Die-stacking technology is expanding the space diversity of on-chip communications by leveraging through-silicon-via (TSV) integration and wafer bonding. The 3D network-on-chip (NoC), a combination of die-stacking technology and systematic on-chip communication infrastructure, suffers from increased thermal density and unbalanced heat dissipation across multi-stacked layers, significantly affecting chip performance and reliability. Recent studies have focused on runtime thermal management (RTM) techniques for improving the heat distribution balance, but performance degradations, owing to RTM mechanisms and unbalanced inter-layer traffic distributions, remain unresolved. In this study, we present a Q-function-based traffic- and thermal-aware adaptive routing algorithm, utilizing a reinforcement machine learning technique that gradually incorporates updated information into an RTM-based 3D NoC routing path. The proposed algorithm initially collects deadlock-free directions, based on the RTM and topology information. Subsequently, Q-learning-based decision making (through the learning of regional traffic information) is deployed for performance improvement with more balanced inter-layer traffic. The simulation results show that the proposed routing algorithm can improve throughput by 14.0%–28.2%, with a 24.9% more balanced inter-layer traffic load and a 30.6% more distributed inter-layer thermal dissipation on average, compared with those obtained in previous studies of a 3D NoC with an 8 × 8 × 4 mesh topology.


Sign in / Sign up

Export Citation Format

Share Document