scholarly journals Peer Review #2 of "Evaluation of extracellular polymeric substances extracted from waste activated sludge as a renewable corrosion inhibitor (v0.1)"

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7193 ◽  
Author(s):  
Liew Chien Go ◽  
William Holmes ◽  
Dilip Depan ◽  
Rafael Hernandez

Background Waste activated sludge (WAS) has recently gained attention as a feedstock for resource recovery. The aim of this study is to investigate the corrosion inhibition efficiencies of extracellular polymeric substances (EPS) extracted from WAS. Methods The studied corrosion inhibitors were tested with carbon steel in 3.64% NaCl saturated with CO2 at 25 °C, which is the typical oilfield environment. They were first prepared by EPS extraction (heating at 80 °C), followed by centrifugation for solid and liquid separation, then the supernatant was freeze-thawed five times for sterilization of microorganisms in WAS to terminate metabolic activities in the test inhibitors to ensure consistency in corrosion inhibition. The EPS mixture (supernatant) was then deemed as the test corrosion inhibitor. The inhibition performance was determined using potentiodynamic polarization scans. Results Waste activated sludge alone showed unsatisfactory inhibition. However, EPS extracted from WAS showed an optimum inhibition of approximately 80% with 1,000 mg/L of inhibitor. The average total solid (TS) and EPS contents of the WAS were 7,330 mg TS/L WAS and 110 mg EPS/g TS, respectively. Three sets of extracted EPS were scanned with fourier-transform infrared spectroscopy (FTIR) and showed almost overlapping curves, yielding the consistent inhibition performance. Discussion The potentiodynamic polarization results indicated that EPS acts as a mixed-type inhibitor which inhibits corrosion on both anode and cathode sites of metal surfaces. Based on the FTIR results, it was assumed that major chemical groups O–H, N–H, C–N, C=O, and C–H contributed to the inhibition by adsorbing on the metal surface, forming a biofilm that acts as a protective barrier to isolate the metal from its corrosive environment. Results show that WAS EPS corrosion inhibitors have inhibition performance comparable to commercial products, signifying their potential in commercialization. This corrosion inhibitor is renewable, biodegradable, non-toxic, and free from heavy metal, making it a superior green corrosion inhibitor candidate. Additionally, turning biomass into value-added product can be beneficial to the environment and, in this case, deriving new materials from WAS could also transform the economics of wastewater treatment operations.


2014 ◽  
Vol 70 (9) ◽  
pp. 1555-1560 ◽  
Author(s):  
Fenxia Ye ◽  
Xinwen Liu ◽  
Ying Li

Anaerobic digestion of waste activated sludge was conducted to gain insight into the mechanisms underlying change in sludge dewaterability during its anaerobic digestion. Unexpectedly, the results indicated that sludge dewatering properties measured by capillary suction time only deteriorated after 10 days of anaerobic digestion, after which dewaterability recovered and remained stable. The loosely bound extracellular polymeric substance (LB-EPS) content increased three-fold after 20 days of anaerobic digestion, and did not change significantly during the remaining 30 days. The tightly bound EPS (TB-EPS) content reduced slightly after 20 days of anaerobic digestion, and stabilized during the last 30 days. Polysaccharides (PS) and proteins (PN) content in LB-EPS increased after 10 days of anaerobic digestion. However, PS and PN contents in TB-EPS decreased slightly. The relationship analysis showed that only LB-EPS correlated with dewaterability of the sludge during anaerobic digestion.


2021 ◽  
Vol 13 (17) ◽  
pp. 9700
Author(s):  
Zicong Liao ◽  
Yongyou Hu ◽  
Yuancai Chen ◽  
Jianhua Cheng

Phosphorus is a nonrenewable and irreplaceable limited resource, and over 90% of phosphorus in influenttransfers into sludge in wastewater treatment plants. In this study, thermally activated peroxydisulfate (TAP) treatment was combined with struvite precipitation to enhance waste activated sludge (WAS) dewaterability and phosphorus recovery. TAP simultaneously enhanced dewaterability and solubilization of WAS. The optimal conditions of TAP treatment were PDS dosage 2.0 mmol/g TSS, 80 °C, pH 4.0~7.0 and 40 min, which enhanced dewaterability (capillary suction time (CST) from 94.2 s to 28.5 s) and solubilization (PO43−-P 177.71 mg/L, NH4+-N 287.22 mg/L and SCOD 10754 mg/L). Radical oxidation disintegrated tightly bound extracellular polymeric substances (TB-EPS) and further released bound water. The acidification effect neutralized the negative surface charge of colloid particles. Compared with thermal hydrolysis, TAP effectively promoted the release of PO43−, NH4+ and SCOD. Cation exchange removed most Ca and Al of the TAP treated supernatant. The optimal conditions of struvite precipitation were Mg/P 1.4 and pH 10.0, which achieved phosphorus recovery of 95.06% and struvite purity of 94.94%. The income obtained by struvite adequately covers the cost of struvite precipitation and the cost of WAS treatment is acceptable.


RSC Advances ◽  
2019 ◽  
Vol 9 (58) ◽  
pp. 33981-33989
Author(s):  
Ying Liu ◽  
Wenzhou Lv ◽  
Siqing Xia ◽  
Zhiqiang Zhang

Nitrogen aeration was superior to air aeration because of the higher EPS production and Pb2+ adsorption in the utilization of WAS.


RSC Advances ◽  
2016 ◽  
Vol 6 (84) ◽  
pp. 80493-80500 ◽  
Author(s):  
Jing Peng ◽  
Kaili Wen ◽  
Wenzong Liu ◽  
Xiuping Yue ◽  
Aijie Wang ◽  
...  

The effect of alkaline-assisted bi-frequency (28 + 40 kHz) ultrasonic pretreatment on extracellular polymeric substances (EPS) solubilization and waste activated sludge (WAS) acidification was investigated.


RSC Advances ◽  
2018 ◽  
Vol 8 (56) ◽  
pp. 32172-32177 ◽  
Author(s):  
Ying Liu ◽  
Wenzhou Lv ◽  
Zhiqiang Zhang ◽  
Siqing Xia

The spatial distribution and adsorption capacity of extracellular polymeric substances (EPS) were systematically investigated for waste activated sludge (WAS) treated by a short-time aerobic digestion (STAD) process.


Sign in / Sign up

Export Citation Format

Share Document