scholarly journals Peer Review #2 of "Paenibacillus strains with nitrogen fixation and multiple beneficial properties for promoting plant growth (v0.1)"

GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 425-431
Author(s):  
Subin Thomas ◽  
Dr. M. Nandhini

Biofertilizers are fertilizers containing microorganisms that promote plant growth by improving the supply of nutrients to the host plant. The supply of nutrients is improved naturally by nitrogen fixation and solubilizing phosphorus. The living microorganisms in biofertilizers help in building organic matter in the soil and restoring the natural nutrient cycle. Biofertilizers can be grouped into Nitrogen-fixing biofertilizers, Phosphorous-solubilizing biofertilizers, Phosphorous-mobilizing biofertilizers, Biofertilizers for micro nutrients and Plant growth promoting rhizobacteria. This study conducted in Kottayam district was intended to identify the awareness and acceptance of biofertilizers among the farmers of the area. Data have been collected from 120 farmers by direct interviews with structured questionnaire.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 77 ◽  
Author(s):  
Aung Zaw Htwe ◽  
Seinn Moh Moh ◽  
Khin Myat Soe ◽  
Kyi Moe ◽  
Takeo Yamakawa

The use of biofertilizers is important for sustainable agriculture, and the use of nodule bacteria and endophytic actinomycetes is an attractive way to enhance plant growth and yield. This study tested the effects of a biofertilizer produced from Bradyrhizobium strains and Streptomyces griseoflavus on leguminous, cereal, and vegetable crops. Nitrogen fixation was measured using the acetylene reduction assay. Under N-limited or N-supplemented conditions, the biofertilizer significantly promoted the shoot and root growth of mung bean, cowpea, and soybean compared with the control. Therefore, the biofertilizer used in this study was effective in mung bean, cowpea, and soybean regardless of N application. In this study, significant increments in plant growth, nodulation, nitrogen fixation, nitrogen, phosphorus, and potassium (NPK) uptake, and seed yield were found in mung beans and soybeans. Therefore, Bradyrhizobium japonicum SAY3-7 plus Bradyrhizobium elkanii BLY3-8 and Streptomyces griseoflavus are effective bacteria that can be used together as biofertilizer for the production of economically important leguminous crops, especially soybean and mung bean. The biofertilizer produced from Bradyrhizobium and S. griseoflavus P4 will be useful for both soybean and mung bean production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luz K. Medina-Cordoba ◽  
Aroon T. Chande ◽  
Lavanya Rishishwar ◽  
Leonard W. Mayer ◽  
Lina C. Valderrama-Aguirre ◽  
...  

AbstractPrevious studies have shown the sugarcane microbiome harbors diverse plant growth promoting microorganisms, including nitrogen-fixing bacteria (diazotrophs), which can serve as biofertilizers. The genomes of 22 diazotrophs from Colombian sugarcane fields were sequenced to investigate potential biofertilizers. A genome-enabled computational phenotyping approach was developed to prioritize sugarcane associated diazotrophs according to their potential as biofertilizers. This method selects isolates that have potential for nitrogen fixation and other plant growth promoting (PGP) phenotypes while showing low risk for virulence and antibiotic resistance. Intact nitrogenase (nif) genes and operons were found in 18 of the isolates. Isolates also encode phosphate solubilization and siderophore production operons, and other PGP genes. The majority of sugarcane isolates showed uniformly low predicted virulence and antibiotic resistance compared to clinical isolates. Six strains with the highest overall genotype scores were experimentally evaluated for nitrogen fixation, phosphate solubilization, and the production of siderophores, gibberellic acid, and indole acetic acid. Results from the biochemical assays were consistent and validated computational phenotype predictions. A genotypic and phenotypic threshold was observed that separated strains by their potential for PGP versus predicted pathogenicity. Our results indicate that computational phenotyping is a promising tool for the assessment of bacteria detected in agricultural ecosystems.


2015 ◽  
Vol 3 (3) ◽  
pp. 552-560 ◽  
Author(s):  
Mohamed A.M. El-Awady ◽  
Mohamed M. Hassan ◽  
Yassin M. Al-Sodany

This study was designed to isolate and characterize endophytic and rhizospheric bacteria associated with the halophyte plant Sesuvium verrucosum, grown under extreme salinity soil in Jeddah, Saudi Arabia. The plant growth promotion activities of isolated bacterial were evaluated in vitro. A total of 19 salt tolerant endophytic and rhizospheric bacterial isolates were obtained and grouped into six according to genetic similarity based on RAPD data. These six isolates were identified by amplification and partial sequences of 16S rDNA as Enterobacter cancerogenus,Vibrio cholerae, Bacillus subtilis, Escherichia coli and two Enterobacter sp. Isolates were then grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, and production of phytohormones such as indole-3-acetic acid, as well as 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. While, All of the six strains were negative for ACC deaminaseactivity, two isolates showed Nitrogen fixation activity, three isolates produce the plant hormone (Indole acetic acid) and two isolates have the activity of solubiliztion of organic phosphate. Among the six isolates, the isolate (R3) from the soil around the roots is able to perform the three previous growth promoting possibilities together and it is ideal for use in promoting the growth of plants under the high salinity conditions. This isolate is candidate to prepare a friendly biofertelizer that can be used for the improvement of the crops performance under salinity conditions.Int J Appl Sci Biotechnol, Vol 3(3): 552-560


Sign in / Sign up

Export Citation Format

Share Document