scholarly journals Peer Review #2 of "Belowground fungal community diversity, composition and ecological functionality associated with winter wheat in conventional and organic agricultural systems (v0.2)"

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9732
Author(s):  
Sigisfredo Garnica ◽  
Ronja Rosenstein ◽  
Max Emil Schön

Understanding the impacts of agricultural practices on belowground fungal communities is crucial in order to preserve biological diversity in agricultural soils and enhance their role in agroecosystem functioning. Although fungal communities are widely distributed, relatively few studies have correlated agricultural production practices. We investigated the diversity, composition and ecological functionality of fungal communities in roots of winter wheat (Triticum aestivum) growing in conventional and organic farming systems. Direct and nested polymerase chain reaction (PCR) amplifications spanning the internal transcribed spacer (ITS) region of the rDNA from pooled fine root samples were performed with two different sets of fungal specific primers. Fungal identification was carried out through similarity searches against validated reference sequences (RefSeq). The R package ‘picante’ and FUNGuild were used to analyse fungal community composition and trophic mode, respectively. Either by direct or cloning sequencing, 130 complete ITS sequences were clustered into 39 operational taxonomic units (OTUs) (25 singletons), belonging to the Ascomycota (24), the Basidiomycota (14) and to the Glomeromycota (1). Fungal communities from conventional farming sites are phylogenetically more related than expected by chance. Constrained ordination analysis identified total N, total S and Pcal that had a significant effect on the OTU’s abundance and distribution, and a further correlation with the diversity of the co-occurring vegetation could be hypothesised. The functional predictions based on FUNGuild suggested that conventional farming increased the presence of plant pathogenic fungi compared with organic farming. Based on diversity, OTU distribution, nutrition mode and the significant phylogenetic clustering of fungal communities, this study shows that fungal communities differ across sampling sites, depending on agricultural practices. Although it is not fully clear which factors determine the fungal communities, our findings suggest that organic farming systems have a positive effect on fungal communities in winter wheat crops.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhimin Zhang ◽  
Qinghui Deng ◽  
Xiuyun Cao ◽  
Yiyong Zhou ◽  
Chunlei Song

Despite fungi playing an important role in nutrient decomposition in aquatic ecosystems and being considered as vital actors in the ecological processes, they received limited attention regarding the community in aquaculture pond sediments which are extremely important and typically disturbed habitats. Using an ITS1 region of fungal rDNA, this study aimed to investigate sediment fungal communities in fish, crab, and crayfish ponds for decades of farming practices at representative aquaculture regions in the middle Yangtze River basin, China. We then aimed to explore the community patterns associated with species-based farming practices in the ponds at 18 farms. The results showed that the pond sediments harbored more than 9,000 operational taxonomic units. The sediments had significantly higher alpha diversity in crab ponds compared to that in fish and crayfish ponds. The fungal phyla largely belonged to Ascomycota and Chytridiomycota, and the dominance of Rozellomycota over Basidiomycota and Aphelidiomycota was observed. The majority of sediment fungal members were ascribed to unclassified fungi, with higher proportions in fish ponds than crab and crayfish ponds. Further, the fungal communities were markedly distinct among the three types of ponds, suggesting divergent patterns of fungal community assemblages caused by farming practices in aquaculture ponds. The community diversity and structure were closely correlated to sediment properties, especially sediment carbon content and pH. Thus, the distribution and pattern of fungal communities in the sediments appear to primarily depend on species-based farming practices responsible for the resulting sediment carbon content and pH in aquaculture ponds. This study provides a detailed snapshot and extension of understanding fungal community structure and variability in pond ecosystems, highlighting the impacts of farming practices on the assembly and succession of sediment fungal communities in aquaculture ponds.


2021 ◽  
Author(s):  
Dongla Gao ◽  
Weihua Wang ◽  
Zhanjiang Han ◽  
Qian Xi ◽  
Ruicheng Guo ◽  
...  

Raw milk and fermented milk are rich in microbial resources, which are essential for the formation of texture, flavor and taste. In order to gain a deeper knowledge of the bacterial and fungal community diversity in local raw milk and home-made yogurts from Sayram town, Baicheng county, Akesu area, southern of Xinjiang, China,30 raw milk and 30 home-made yogurt samples were collected and experiment of high-throughput sequencing was implemented.The results of experiments revealed the species of fungi in raw milk was the most, and the species of bacteria in fermented milk was the least.Based on principal component analysis (PCA), it was found that the bacterial and fungal community structure differed in samples from two types of dairy products.And the presence of 15 bacterial and 12 fungal phyla, comprising 218 bacterial and 495 fungal genera respectively, among all samples. Firmicutes and Ascomycota,Lactobacillus and Candida were the predominant phyla and genera of bacteria and fungi, respectively. The results indicated that the microbial community of raw milk differs from home-made yogurts due to sampling location and manufacturing process. The study suggested that high-throughput sequencing could provide a better understanding of microbiological diversity as well as lay a theoretical foundation for selecting beneficial microbial resources from this natural yogurt.


Sign in / Sign up

Export Citation Format

Share Document