scholarly journals A learning mechanism completed in milliseconds capable of transitioning to stabilizable forms can generate working, short and long-term memories - A verifiable mechanism

Author(s):  
Kunjumon I Vadakkan

Multiple associative learning events can take place within sub-second time and the "completed" mechanism can then be used for specific memory retrieval without any lapse of time. This indicates that a biological process is completed within the matching time-scales of milliseconds that can be used for retrieving specific memory. Since qualia of working, short-term and long-term memories are same except for degradation of features in long-term memory and since every long-term memory had the capability to induce working memory immediately after learning, all memories are anticipated to get induced from a mechanism formed at the time of learning. When memories are viewed as first-person internal sensations, a derived mechanism fulfills the "completion" requirement within milliseconds that can be used to induce working memory and can be transitioned to stabilizable forms to induce short-term and long-term memories.

2018 ◽  
Author(s):  
Kunjumon I Vadakkan

Multiple associative learning events can take place within sub-second time and the "completed" mechanism can then be used for specific memory retrieval without any lapse of time. This indicates that a biological process is completed within the matching time-scales of milliseconds that can be used for retrieving specific memory. Since qualia of working, short-term and long-term memories are same except for degradation of features in long-term memory and since every long-term memory had the capability to induce working memory immediately after learning, all memories are anticipated to get induced from a mechanism formed at the time of learning. When memories are viewed as first-person internal sensations, a derived mechanism fulfills the "completion" requirement within milliseconds that can be used to induce working memory and can be transitioned to stabilizable forms to induce short-term and long-term memories.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


Author(s):  
Ian Neath ◽  
Jean Saint-Aubin ◽  
Tamra J. Bireta ◽  
Andrew J. Gabel ◽  
Chelsea G. Hudson ◽  
...  

2020 ◽  
pp. 282-310
Author(s):  
Patricia A. Reuter-Lorenz ◽  
Alexandru D. Iordan

This chapter reviews evidence from behavioural and cognitive neuroscience research that supports a unitary view of memory whereby working memory and long-term memory phenomena arise from representations and processes that are largely shared when remembering over the short or long term. Using ‘false working memories’ as a case study, it highlights several paradoxes that cannot be explained by a multisystem view of memory in which working memory and long-term memory are structurally distinct. Instead, it is posited that behavioural memory effects over the short and long term relating to semantic processing, modality/domain-specificity, dual-task interference, strategic processing, and so on arise from the differences in activational states and availability of different representational features (e.g. sensory/perceptual, associative, action-based) that vary in their time courses and activity, attentional priority, and susceptibility to interference. Cognitive neuroscience evidence primarily from brain imaging methodologies that support this view is reviewed.


2019 ◽  
Vol 30 (5) ◽  
pp. 2997-3014 ◽  
Author(s):  
Benjamin Kowialiewski ◽  
Laurens Van Calster ◽  
Lucie Attout ◽  
Christophe Phillips ◽  
Steve Majerus

Abstract An influential theoretical account of working memory (WM) considers that WM is based on direct activation of long-term memory knowledge. While there is empirical support for this position in the visual WM domain, direct evidence is scarce in the verbal WM domain. This question is critical for models of verbal WM, as the question of whether short-term maintenance of verbal information relies on direct activation within the long-term linguistic knowledge base or not is still debated. In this study, we examined the extent to which short-term maintenance of lexico-semantic knowledge relies on neural activation patterns in linguistic cortices, and this by using a fast encoding running span task for word and nonword stimuli minimizing strategic encoding mechanisms. Multivariate analyses showed specific neural patterns for the encoding and maintenance of word versus nonword stimuli. These patterns were not detectable anymore when participants were instructed to stop maintaining the memoranda. The patterns involved specific regions within the dorsal and ventral pathways, which are considered to support phonological and semantic processing to various degrees. This study provides novel evidence for a role of linguistic cortices in the representation of long-term memory linguistic knowledge during WM processing.


Author(s):  
Stoo Sepp ◽  
Steven J. Howard ◽  
Sharon Tindall-Ford ◽  
Shirley Agostinho ◽  
Fred Paas

In 1956, Miller first reported on a capacity limitation in the amount of information the human brain can process, which was thought to be seven plus or minus two items. The system of memory used to process information for immediate use was coined “working memory” by Miller, Galanter, and Pribram in 1960. In 1968, Atkinson and Shiffrin proposed their multistore model of memory, which theorized that the memory system was separated into short-term memory, long-term memory, and the sensory register, the latter of which temporarily holds and forwards information from sensory inputs to short term-memory for processing. Baddeley and Hitch built upon the concept of multiple stores, leading to the development of the multicomponent model of working memory in 1974, which described two stores devoted to the processing of visuospatial and auditory information, both coordinated by a central executive system. Later, Cowan’s theorizing focused on attentional factors in the effortful and effortless activation and maintenance of information in working memory. In 1988, Cowan published his model—the scope and control of attention model. In contrast, since the early 2000s Engle has investigated working memory capacity through the lens of his individual differences model, which does not seek to quantify capacity in the same way as Miller or Cowan. Instead, this model describes working memory capacity as the interplay between primary memory (working memory), the control of attention, and secondary memory (long-term memory). This affords the opportunity to focus on individual differences in working memory capacity and extend theorizing beyond storage to the manipulation of complex information. These models and advancements have made significant contributions to understandings of learning and cognition, informing educational research and practice in particular. Emerging areas of inquiry include investigating use of gestures to support working memory processing, leveraging working memory measures as a means to target instructional strategies for individual learners, and working memory training. Given that working memory is still debated, and not yet fully understood, researchers continue to investigate its nature, its role in learning and development, and its implications for educational curricula, pedagogy, and practice.


1966 ◽  
Vol 18 (3) ◽  
pp. 266-269 ◽  
Author(s):  
R. Conrad ◽  
A. J. Hull

It has been proposed that a single set of operations based on classical interference theory is adequate to describe the phenomena of both short- and long-term memory. An article by Keppel and Underwood (1962) argues that short-term forgetting is due to proactive interference and, by implication, not a result of trace decay. An experiment which varied retention interval and the nature of the interpolated task, gave results which indicate that when the amount forgotten and the nature of errors are considered, a decay model is supported, the proactive interference suggestion being untenable.


2018 ◽  
Vol 74 (8) ◽  
pp. 1317-1325 ◽  
Author(s):  
Jonathan Strunk ◽  
Lauren Morgan ◽  
Sarah Reaves ◽  
Paul Verhaeghen ◽  
Audrey Duarte

Abstract Objectives Declines in both short- and long-term memory are typical of healthy aging. Recent findings suggest that retrodictive attentional cues (“retro-cues”) that indicate the location of to-be-probed items in short-term memory (STM) have a lasting impact on long-term memory (LTM) performance in young adults. Whether older adults can also use retro-cues to facilitate both STM and LTM is unknown. Method Young and older adults performed a visual STM task in which spatially informative retro-cues or noninformative neutral-cues were presented during STM maintenance of real-world objects. We tested participants’ memory at both STM and LTM delays for objects that were previously cued with retrodictive or neutral-cues during STM order to measure the lasting impact of retrospective attention on LTM. Results Older adults showed reduced STM and LTM capacity compared to young adults. However, they showed similar magnitude retro-cue memory benefits as young adults at both STM and LTM delays. Discussion To the best of our knowledge, this is the first study to investigate whether retro-cues in STM facilitate the encoding of objects into LTM such that they are more likely to be subsequently retrieved by older adults. Our results support the idea that retrospective attention can be an effective means by which older adults can improve their STM and LTM performance, even in the context of reduced memory capacity.


2019 ◽  
Author(s):  
Evan Nathaniel Lintz ◽  
Matthew Johnson

Researchers have investigated “refreshing” of items in working memory (WM) as ameans of preserving them, while concurrently, other studies have examined “removal” of items from WM that are irrelevant. However, it is unclear whether refreshing and removal in WM truly represent different processes, or if participants, in an effort to avoid the to-be-removed items, simply refresh alternative items. We conducted two experiments to test whether these putative processes can be distinguished from one another. Participants were presented with sets of three words and then cued to either refresh one item or remove two items from WM, followed by a lexical decision probe containing either one of the just-seen words or a non-word. In Experiment 1, all probes were valid and in Experiment 2, probes were occasionally invalid (the probed word was one of the removed/non-refreshed items). In both experiments, participants also received a subsequent surprise long-term memory test. Results from both experiments suggested the expected advantages for refreshed (or non-removed) items in both short-term response time and long-term recognition, but no differences between refresh and remove instructions that would suggest a fundamental difference in processes. Thus, we argue that a functional distinction between refreshing and removal may not be necessary, and propose that both of these putative processes could potentially be subsumed under an overarching conceptual perspective based on the flexible reallocation of mental or reflective attention.


2003 ◽  
Vol 26 (6) ◽  
pp. 760-769
Author(s):  
Daniel S. Ruchkin ◽  
Jordan Grafman ◽  
Katherine Cameron ◽  
Rita S. Berndt

The goal of our target article is to establish that electrophysiological data constrain models of short-term memory retention operations to schemes in which activated long-term memory is its representational basis. The temporary stores correspond to neural circuits involved in the perception and subsequent processing of the relevant information, and do not involve specialized neural circuits dedicated to the temporary holding of information outside of those embedded in long-term memory. The commentaries ranged from general agreement with the view that short-term memory stores correspond to activated long-term memory (e.g., Abry, Sato, Schwartz, Loevenbruck & Cathiard [Abry etal.], Cowan, Fuster, Grote, Hickok & Buchsbaum, Keenan, Hyönä & Kaakinen [Keenan et al.], Martin, Morra), to taking a definite exception to this view (e.g., Baddeley, Düzel, Logie & Della Sala, Kroger, Majerus, Van der Linden, Colette & Salmon [Majerus et al.], Vallar).


Sign in / Sign up

Export Citation Format

Share Document