scholarly journals Sample-level sound synthesis with recurrent neural networks and conceptors

Author(s):  
Chris Kiefer

Conceptors are a recent development in the field of reservoir computing; they can be used to influence the dynamics of recurrent neural networks (RNNs), enabling generation of arbitrary patterns based on training data. Conceptors allow interpolation and extrapolation between patterns, and also provide a system of boolean logic for combining patterns together. Generation and manipulation of arbitrary patterns using conceptors has significant potential as a sound synthesis method for applications in computer music and procedural audio but has yet to be explored. Two novel methods of sound synthesis based on conceptors are introduced. Conceptular Synthesis is based on granular synthesis; sets of conceptors are trained to recall varying patterns from a single RNN, then a runtime mechanism switches between them, generating short patterns which are recombined into a longer sound. Conceptillators are trainable, pitch-controlled oscillators for harmonically rich waveforms, commonly used in a variety of sound synthesis applications. Both systems can exploit conceptor pattern morphing, boolean logic and manipulation of RNN dynamics, enabling new creative sonic possibilities. Experiments reveal how RNN runtime parameters can be used for pitch-independent timestretching and for precise frequency control of cyclic waveforms. They show how these techniques can create highly malleable sound synthesis models, trainable using short sound samples. Limitations are revealed with regards to reproduction quality, and pragmatic limitations are also shown, where exponential rises in computation and memory requirements preclude the use of these models for training with longer sound samples. The techniques presented here represent an initial exploration of the sound synthesis potential of conceptors; future possibilities and research questions are outlined, including possibilities in generative sound.

2018 ◽  
Author(s):  
Chris Kiefer

Conceptors are a recent development in the field of reservoir computing; they can be used to influence the dynamics of recurrent neural networks (RNNs), enabling generation of arbitrary patterns based on training data. Conceptors allow interpolation and extrapolation between patterns, and also provide a system of boolean logic for combining patterns together. Generation and manipulation of arbitrary patterns using conceptors has significant potential as a sound synthesis method for applications in computer music and procedural audio but has yet to be explored. Two novel methods of sound synthesis based on conceptors are introduced. Conceptular Synthesis is based on granular synthesis; sets of conceptors are trained to recall varying patterns from a single RNN, then a runtime mechanism switches between them, generating short patterns which are recombined into a longer sound. Conceptillators are trainable, pitch-controlled oscillators for harmonically rich waveforms, commonly used in a variety of sound synthesis applications. Both systems can exploit conceptor pattern morphing, boolean logic and manipulation of RNN dynamics, enabling new creative sonic possibilities. Experiments reveal how RNN runtime parameters can be used for pitch-independent timestretching and for precise frequency control of cyclic waveforms. They show how these techniques can create highly malleable sound synthesis models, trainable using short sound samples. Limitations are revealed with regards to reproduction quality, and pragmatic limitations are also shown, where exponential rises in computation and memory requirements preclude the use of these models for training with longer sound samples. The techniques presented here represent an initial exploration of the sound synthesis potential of conceptors; future possibilities and research questions are outlined, including possibilities in generative sound.


2019 ◽  
Vol 5 ◽  
pp. e205 ◽  
Author(s):  
Chris Kiefer

Conceptors are a recent development in the field of reservoir computing; they can be used to influence the dynamics of recurrent neural networks (RNNs), enabling generation of arbitrary patterns based on training data. Conceptors allow interpolation and extrapolation between patterns, and also provide a system of boolean logic for combining patterns together. Generation and manipulation of arbitrary patterns using conceptors has significant potential as a sound synthesis method for applications in computer music but has yet to be explored. Conceptors are untested with the generation of multi-timbre audio patterns, and little testing has been done on scalability to longer patterns required for audio. A novel method of sound synthesis based on conceptors is introduced. Conceptular Synthesis is based on granular synthesis; sets of conceptors are trained to recall varying patterns from a single RNN, then a runtime mechanism switches between them, generating short patterns which are recombined into a longer sound. The quality of sound resynthesis using this technique is experimentally evaluated. Conceptor models are shown to resynthesise audio with a comparable quality to a close equivalent technique using echo state networks with stored patterns and output feedback. Conceptor models are also shown to excel in their malleability and potential for creative sound manipulation, in comparison to echo state network models which tend to fail when the same manipulations are applied. Examples are given demonstrating creative sonic possibilities, by exploiting conceptor pattern morphing, boolean conceptor logic and manipulation of RNN dynamics. Limitations of conceptor models are revealed with regards to reproduction quality, and pragmatic limitations are also shown, where rises in computation and memory requirements preclude the use of these models for training with longer sound samples. The techniques presented here represent an initial exploration of the sound synthesis potential of conceptors, demonstrating possible creative applications in sound design; future possibilities and research questions are outlined.


2018 ◽  
Vol 8 (12) ◽  
pp. 2416 ◽  
Author(s):  
Ansi Zhang ◽  
Honglei Wang ◽  
Shaobo Li ◽  
Yuxin Cui ◽  
Zhonghao Liu ◽  
...  

Prognostics, such as remaining useful life (RUL) prediction, is a crucial task in condition-based maintenance. A major challenge in data-driven prognostics is the difficulty of obtaining a sufficient number of samples of failure progression. However, for traditional machine learning methods and deep neural networks, enough training data is a prerequisite to train good prediction models. In this work, we proposed a transfer learning algorithm based on Bi-directional Long Short-Term Memory (BLSTM) recurrent neural networks for RUL estimation, in which the models can be first trained on different but related datasets and then fine-tuned by the target dataset. Extensive experimental results show that transfer learning can in general improve the prediction models on the dataset with a small number of samples. There is one exception that when transferring from multi-type operating conditions to single operating conditions, transfer learning led to a worse result.


2020 ◽  
Vol 126 ◽  
pp. 191-217 ◽  
Author(s):  
P.R. Vlachas ◽  
J. Pathak ◽  
B.R. Hunt ◽  
T.P. Sapsis ◽  
M. Girvan ◽  
...  

2013 ◽  
Vol 25 (3) ◽  
pp. 671-696 ◽  
Author(s):  
G. Manjunath ◽  
H. Jaeger

The echo state property is a key for the design and training of recurrent neural networks within the paradigm of reservoir computing. In intuitive terms, this is a passivity condition: a network having this property, when driven by an input signal, will become entrained by the input and develop an internal response signal. This excited internal dynamics can be seen as a high-dimensional, nonlinear, unique transform of the input with a rich memory content. This view has implications for understanding neural dynamics beyond the field of reservoir computing. Available definitions and theorems concerning the echo state property, however, are of little practical use because they do not relate the network response to temporal or statistical properties of the driving input. Here we present a new definition of the echo state property that directly connects it to such properties. We derive a fundamental 0-1 law: if the input comes from an ergodic source, the network response has the echo state property with probability one or zero, independent of the given network. Furthermore, we give a sufficient condition for the echo state property that connects statistical characteristics of the input to algebraic properties of the network connection matrix. The mathematical methods that we employ are freshly imported from the young field of nonautonomous dynamical systems theory. Since these methods are not yet well known in neural computation research, we introduce them in some detail. As a side story, we hope to demonstrate the eminent usefulness of these methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Rikke Amilde Løvlid

Echo state networks are a relatively new type of recurrent neural networks that have shown great potentials for solving non-linear, temporal problems. The basic idea is to transform the low dimensional temporal input into a higher dimensional state, and then train the output connection weights to make the system output the target information. Because only the output weights are altered, training is typically quick and computationally efficient compared to training of other recurrent neural networks. This paper investigates using an echo state network to learn the inverse kinematics model of a robot simulator with feedback-error-learning. In this scheme teacher forcing is not perfect, and joint constraints on the simulator makes the feedback error inaccurate. A novel training method which is less influenced by the noise in the training data is proposed and compared to the traditional ESN training method.


2020 ◽  
Author(s):  
Pablo Gimeno ◽  
Victoria Mingote ◽  
Alfonso Ortega ◽  
Antonio Miguel ◽  
Eduardo Lleida

Sign in / Sign up

Export Citation Format

Share Document