scholarly journals A local search algorithm for the constrained max cut problem on hypergraphs.

Author(s):  
Nasim Samei ◽  
Roberto Solis-Oba

In the constrained max k-cut problem on hypergraphs, we are given a weighted hypergraph H=(V, E), an integer k and a set c of constraints. The goal is to divide the set V of vertices into k disjoint partitions in such a way that the sum of the weights of the hyperedges having at least two endpoints in different partitions is maximized and the partitions satisfy all the constraints in c. In this paper we present a local search algorithm for the constrained max k-cut problem on hypergraphs and show that it has approximation ratio 1-1/k for a variety of constraints c, such as for the constraints defining the max Steiner k-cut problem, the max multiway cut problem and the max k-cut problem. We also show that our local search algorithm can be used on the max k-cut problem with given sizes of parts and on the capacitated max k-cut problem, and has approximation ratio 1-|Vmax|/|V|, where |Vmax| is the cardinality of the biggest partition. In addition, we present a local search algorithm for the directed max k-cut problem that has approximation ratio (k-1)/(3k-2).

2018 ◽  
Author(s):  
Nasim Samei ◽  
Roberto Solis-Oba

In the constrained max k-cut problem on hypergraphs, we are given a weighted hypergraph H=(V, E), an integer k and a set c of constraints. The goal is to divide the set V of vertices into k disjoint partitions in such a way that the sum of the weights of the hyperedges having at least two endpoints in different partitions is maximized and the partitions satisfy all the constraints in c. In this paper we present a local search algorithm for the constrained max k-cut problem on hypergraphs and show that it has approximation ratio 1-1/k for a variety of constraints c, such as for the constraints defining the max Steiner k-cut problem, the max multiway cut problem and the max k-cut problem. We also show that our local search algorithm can be used on the max k-cut problem with given sizes of parts and on the capacitated max k-cut problem, and has approximation ratio 1-|Vmax|/|V|, where |Vmax| is the cardinality of the biggest partition. In addition, we present a local search algorithm for the directed max k-cut problem that has approximation ratio (k-1)/(3k-2).


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Carolina Lagos ◽  
Guillermo Guerrero ◽  
Enrique Cabrera ◽  
Stefanie Niklander ◽  
Franklin Johnson ◽  
...  

A novel matheuristic approach is presented and tested on a well-known optimisation problem, namely, capacitated facility location problem (CFLP). The algorithm combines local search and mathematical programming. While the local search algorithm is used to select a subset of promising facilities, mathematical programming strategies are used to solve the subproblem to optimality. Proposed local search is influenced by instance-specific information such as installation cost and the distance between customers and facilities. The algorithm is tested on large instances of the CFLP, where neither local search nor mathematical programming is able to find good quality solutions within acceptable computational times. Our approach is shown to be a very competitive alternative to solve large-scale instances for the CFLP.


2018 ◽  
Vol 69 (6) ◽  
pp. 849-863 ◽  
Author(s):  
Ruizhi Li ◽  
Shuli Hu ◽  
Peng Zhao ◽  
Yupeng Zhou ◽  
Minghao Yin

2006 ◽  
Vol 14 (2) ◽  
pp. 223-253 ◽  
Author(s):  
Frédéric Lardeux ◽  
Frédéric Saubion ◽  
Jin-Kao Hao

This paper presents GASAT, a hybrid algorithm for the satisfiability problem (SAT). The main feature of GASAT is that it includes a recombination stage based on a specific crossover and a tabu search stage. We have conducted experiments to evaluate the different components of GASAT and to compare its overall performance with state-of-the-art SAT algorithms. These experiments show that GASAT provides very competitive results.


Sign in / Sign up

Export Citation Format

Share Document