scholarly journals Phenotypic plasticity promotes recombination and gene clustering in periodic environments

Author(s):  
Davorka Gulisija ◽  
Joshua B. Plotkin

While theory offers clear predictions for when recombination will evolve in changing environments, it is unclear what natural scenarios can generate the necessary conditions. The Red Queen hypothesis provides one such scenario in natural populations, but it requires interaction with antagonistic species such as host-parasite systems. We present a novel scenario for the evolution of recombination in finite populations: the genomic storage effect due to phenotypic plasticity. Using an analytic approximation and Monte Carlo simulations we demonstrate that balanced polymorphism and recombination evolve between a target locus that codes for a seasonally selected trait and a plasticity modifier locus that modulates the effects of target-locus alleles. Unlike in prior models, evolution of recombination by this plasticity effect does not require antagonistic inter-specific interactions or a steady influx of mutation, and it occurs even when a single target locus expresses a trait under selection. Furthermore, we show that selection will suppress the recombination rate among multiple polymorphic target loci, even in the absence of epistasis among them, which produces a cluster of linked loci under selection. These results provide a novel biological scenario for the evolution of recombination and supergenes.

2017 ◽  
Author(s):  
Davorka Gulisija ◽  
Joshua B. Plotkin

While theory offers clear predictions for when recombination will evolve in changing environments, it is unclear what natural scenarios can generate the necessary conditions. The Red Queen hypothesis provides one such scenario in natural populations, but it requires interaction with antagonistic species such as host-parasite systems. We present a novel scenario for the evolution of recombination in finite populations: the genomic storage effect due to phenotypic plasticity. Using an analytic approximation and Monte Carlo simulations we demonstrate that balanced polymorphism and recombination evolve between a target locus that codes for a seasonally selected trait and a plasticity modifier locus that modulates the effects of target-locus alleles. Unlike in prior models, evolution of recombination by this plasticity effect does not require antagonistic inter-specific interactions or a steady influx of mutation, and it occurs even when a single target locus expresses a trait under selection. Furthermore, we show that selection will suppress the recombination rate among multiple polymorphic target loci, even in the absence of epistasis among them, which produces a cluster of linked loci under selection. These results provide a novel biological scenario for the evolution of recombination and supergenes.


2016 ◽  

AbstractThe impact of changing environments on the evolution of genetic recombination is still unclear. While the Red Queen hypothesis provides a reasonable explanation for recombination, it requires coevolution with antagonistic species, such as host-parasite systems. We present a novel scenario for the evolution of recombination in changing environments: the genomic storage effect due to phenotypic plasticity. Using an analytic approximation and Monte Carlo simulations, we demonstrate that recombination evolves between a target locus that determines fitness, and a modifier locus that modulates the effects of alleles at the target. Evolution of recombination by this plasticity effect does not require antagonistic inter-specific interactions and, unlike in previous models, it occurs when only one target locus codes for a trait under selection. Furthermore, if the effects of multiple target loci are modified by the same plasticity locus, then the recombination rate among the target loci will tend to decrease, clustering the loci that influence a trait. These results provide a novel scenario for the evolution of recombination, highlighting the importance of phenotypic plasticity for recombination modification.


2016 ◽  
Author(s):  
Davorka Gulisija ◽  
Yuseob Kim ◽  
Joshua B. Plotkin

Phenotypic plasticity is known to evolve in perturbed habitats, where it alleviates the deleterious effects of selection. But the effects of plasticity on levels of genetic polymorphism, an important precursor to adaptation in temporally varying environments, are unclear. Here we develop a haploid, two-locus population-genetic model to describe the interplay between a plasticity modifier locus and a target locus subject to periodically varying selection. We find that the interplay between these two loci can produce a 'genomic storage effect' that promotes balanced polymorphism over a large range of parameters, in the absence of all other conditions known to maintain genetic variation. The genomic storage effect arises as recombination allows alleles at the two loci to escape more harmful genetic backgrounds and associate in haplotypes that persist until environmental conditions change. Using both Monte Carlo simulations and analytical approximations we quantify the strength of the genomic storage effect across a range of selection pressures, recombination rates, plasticity modifier effect sizes, and environmental periods.


1991 ◽  
Vol 69 (1) ◽  
pp. 34-38 ◽  
Author(s):  
M. Pigliucci ◽  
M. G. Politi ◽  
D. Bellincampi

Implications of phenotypic plasticity in a subspecific numerical taxonomic study of Ornithogalum montanum Cyr. (Liliaceae) are discussed. Clones belonging to six natural populations were grown in a glasshouse, and their morphological response to three water dosages was analyzed by means of principal component analysis. PC-1 ranks the three groups of replicated populations, suggesting a high degree of phenotypic plasticity; on the other hand, PC-3 is almost environmentally independent. Proximities in the phenetic space are shown to be at least partially environmentally dependent, suggesting a reaction norm for the character correlation matrix. The results do not corroborate a previous recognition of six subspecies of O. montanum. Key words: phenotypic plasticity, numerical taxonomy, Ornithogalum, reaction norm, principal component analysis.


2020 ◽  
Author(s):  
Melanie Lindner ◽  
Veronika N. Laine ◽  
Irene Verhagen ◽  
Heidi M. Viitaniemi ◽  
Marcel E. Visser ◽  
...  

ABSTRACTClimate change significantly impacts natural populations, particularly phenology traits, like the seasonal onset of reproduction in birds. This impact is mainly via plastic responses in phenology traits to changes in the environment, but the molecular mechanism mediating this plasticity remains elusive. Epigenetic modifications can mediate plasticity and consequently constitute promising candidates for mediating phenology traits. Here, we used genome-wide DNA methylation profiles of individual great tit (Parus major) females that we blood sampled repeatedly throughout the breeding season. We demonstrate rapid and directional variation in DNA methylation within the regulatory region of genes known to play key roles in avian reproduction that are in line with observed changes in gene expression in chickens. Our findings provide an important step towards unraveling the molecular mechanism mediating a key life history trait, an essential knowledge-gap for understanding how natural populations may cope with future climate change.IMPACT SUMMARYNatural populations are increasingly challenged by changing environmental conditions like global increases in temperature. A key way for species to adapt to global warming is via phenotypic plasticity, i.e. the ability to adjust the expression of traits to the environment. We, however, know little about how the environment can interact with an organism’s genetic make-up to shape its trait value. Epigenetic marks are known to vary with the environment and can modulate the expression of traits without any change in the genetic make-up and therefore have the potential to mediate phenotypic plasticity.To study the role of epigenetics for phenotypic plasticity, we here focus on the great tit (Parus major), a species that is strongly affected by global warming and plastic for temperature in an essential phenology trait, the seasonal onset of egg laying. As a first step, we investigated whether great tit females show within-individual and short-term variation in DNA methylation that corresponds to changes in the reproductive state of females. We therefore housed breeding pairs in climate-controlled aviaries to blood sample each female repeatedly throughout the breeding season and used these repeated samples for methylation profiling.We found rapid and directional variation in DNA methylation at the time females prepared to initiate egg laying that is located within the regulatory region of genes that have previously described functions for avian reproduction. Although future work is needed to establish a causal link between the observed temporal variation in DNA methylation and the onset of reproduction in female great tits, our work highlights the potential role for epigenetic modifications in mediating an essential phenology trait that is sensitive to temperatures.


2021 ◽  
Author(s):  
Curtis M Lively ◽  
Julie Xu ◽  
Frida Ben-Ami

Parasite-mediated selection is thought to maintain host genetic diversity for resistance. We might thus expect to find a strong positive correlation between host genetic diversity and infection prevalence across natural populations. Here we used computer simulations to examine host-parasite coevolution in 20 simi-isolated clonal populations across a broad range of values for both parasite virulence and parasite fecundity. We found that the correlation between host genetic diversity and infection prevalence can be significantly positive for intermediate values of parasite virulence and fecundity. But the correlation can also be weak and statistically non-significant, even when parasite-mediated frequency-dependent selection is the sole force maintaining host diversity. Hence correlational analyses of field populations, while useful, might underestimate the role of parasites in maintaining host diversity.


2010 ◽  
Vol 365 (1540) ◽  
pp. 593-603 ◽  
Author(s):  
Armin P. Moczek

Phenotypic plasticity in general and polyphenic development in particular are thought to play important roles in organismal diversification and evolutionary innovation. Focusing on the evolutionary developmental biology of insects, and specifically that of horned beetles, I explore the avenues by which phenotypic plasticity and polyphenic development have mediated the origins of novelty and diversity. Specifically, I argue that phenotypic plasticity generates novel targets for evolutionary processes to act on, as well as brings about trade-offs during development and evolution, thereby diversifying evolutionary trajectories available to natural populations. Lastly, I examine the notion that in those cases in which phenotypic plasticity is underlain by modularity in gene expression, it results in a fundamental trade-off between degree of plasticity and mutation accumulation. On one hand, this trade-off limits the extent of plasticity that can be accommodated by modularity of gene expression. On the other hand, it causes genes whose expression is specific to rare environments to accumulate greater variation within species, providing the opportunity for faster divergence and diversification between species, compared with genes expressed across environments. Phenotypic plasticity therefore contributes to organismal diversification on a variety of levels of biological organization, thereby facilitating the evolution of novel traits, new species and complex life cycles.


Parasitology ◽  
1990 ◽  
Vol 100 (S1) ◽  
pp. S19-S26 ◽  
Author(s):  
G. Bell ◽  
A. Burt

The object of this paper is to suggest that there may be an unexpected connexion between parasites and the evolution of sex, using for illustration an unfamiliar type of parasite, the selfish chromosome. The major intellectual challenge of sexuality is to an environment which is continually getting worse. The elegant solution given by the Red Queen theory (Levin, 1975; Hamilton, 1980; Bell, 1982; Bell & Maynard Smith, 1988) is that the relevant aspect of the environment is provided by antagonists—pathogens, predators and competitors—which, because they can respond adaptively so as to negate any improvement that has been made, provide a constant stimulus for continued evolution. Sexuality and recombination are favoured because some of the new combinations of genes which they create are resistant to the current population of antagonists. In other respects, sex and recombination are probably highly disadvantageous: outcrossed sex is expensive because it halves the rate of transmission of genes, while recombination breaks up successful combinations of genes. It is only in certain circumstances that the necessity for continual counter-adaptation will overcome these disadvantages: in particular, the damage (reduction in fitness) caused by an antagonist must be substantial, and the amount of damage must depend on a genetic interaction between the antagonistic species. These requirements are often satisfied by host—parasite systems, where both the ecological and genetic interactions between the antagonists may be very severe and highly specific (see reviews by Day, 1974 and Burdon, 1987). It is possible, therefore, that sex and recombination are maintained in natural populations largely through the dynamics of the coevolution of hosts and their parasites. This is certainly compatible with the major ecological patterns shown by sexual systems, with outcrossed sex being more common in the sea than in freshwater, more common at low than at high latitudes, and generally more common in stable, complex, climax environments where interactions between species are expected to be more frequent and intense (Bell, 1982). However, there is as yet no evidence which conclusively supports a direct causal link between the incidence of parasitism and the rate of recombination. In particular, it has never been demonstrated that a particular parasite has the effect of eliciting, directly or indirectly, a greater rate of genetic recombination in its host. We suggest that such a parasite exists; both the parasite and its effects are well known, but have never been interpreted in the context of the evolution of recombination through host—parasite coevolution. It is in many respects a rather unusual parasite. We shall argue that B-chromosomes represent highly evolved parasitic DNA, transmitted through the germ line and often eliciting greater rates of recombination in the host genome.


Sign in / Sign up

Export Citation Format

Share Document