scholarly journals HOST-PARASITE GENETIC INTERACTIONS AND VIRULENCE-TRANSMISSION RELATIONSHIPS IN NATURAL POPULATIONS OF MONARCH BUTTERFLIES

Evolution ◽  
2010 ◽  
Vol 64 (2) ◽  
pp. 502-514 ◽  
Author(s):  
Jacobus C. de Roode ◽  
Sonia Altizer
2021 ◽  
Author(s):  
Curtis M Lively ◽  
Julie Xu ◽  
Frida Ben-Ami

Parasite-mediated selection is thought to maintain host genetic diversity for resistance. We might thus expect to find a strong positive correlation between host genetic diversity and infection prevalence across natural populations. Here we used computer simulations to examine host-parasite coevolution in 20 simi-isolated clonal populations across a broad range of values for both parasite virulence and parasite fecundity. We found that the correlation between host genetic diversity and infection prevalence can be significantly positive for intermediate values of parasite virulence and fecundity. But the correlation can also be weak and statistically non-significant, even when parasite-mediated frequency-dependent selection is the sole force maintaining host diversity. Hence correlational analyses of field populations, while useful, might underestimate the role of parasites in maintaining host diversity.


Science ◽  
1972 ◽  
Vol 177 (4047) ◽  
pp. 426-429 ◽  
Author(s):  
L. P. Brower ◽  
P. B. McEvoy ◽  
K. L. Williamson ◽  
M. A. Flannery

Parasitology ◽  
1990 ◽  
Vol 100 (S1) ◽  
pp. S19-S26 ◽  
Author(s):  
G. Bell ◽  
A. Burt

The object of this paper is to suggest that there may be an unexpected connexion between parasites and the evolution of sex, using for illustration an unfamiliar type of parasite, the selfish chromosome. The major intellectual challenge of sexuality is to an environment which is continually getting worse. The elegant solution given by the Red Queen theory (Levin, 1975; Hamilton, 1980; Bell, 1982; Bell & Maynard Smith, 1988) is that the relevant aspect of the environment is provided by antagonists—pathogens, predators and competitors—which, because they can respond adaptively so as to negate any improvement that has been made, provide a constant stimulus for continued evolution. Sexuality and recombination are favoured because some of the new combinations of genes which they create are resistant to the current population of antagonists. In other respects, sex and recombination are probably highly disadvantageous: outcrossed sex is expensive because it halves the rate of transmission of genes, while recombination breaks up successful combinations of genes. It is only in certain circumstances that the necessity for continual counter-adaptation will overcome these disadvantages: in particular, the damage (reduction in fitness) caused by an antagonist must be substantial, and the amount of damage must depend on a genetic interaction between the antagonistic species. These requirements are often satisfied by host—parasite systems, where both the ecological and genetic interactions between the antagonists may be very severe and highly specific (see reviews by Day, 1974 and Burdon, 1987). It is possible, therefore, that sex and recombination are maintained in natural populations largely through the dynamics of the coevolution of hosts and their parasites. This is certainly compatible with the major ecological patterns shown by sexual systems, with outcrossed sex being more common in the sea than in freshwater, more common at low than at high latitudes, and generally more common in stable, complex, climax environments where interactions between species are expected to be more frequent and intense (Bell, 1982). However, there is as yet no evidence which conclusively supports a direct causal link between the incidence of parasitism and the rate of recombination. In particular, it has never been demonstrated that a particular parasite has the effect of eliciting, directly or indirectly, a greater rate of genetic recombination in its host. We suggest that such a parasite exists; both the parasite and its effects are well known, but have never been interpreted in the context of the evolution of recombination through host—parasite coevolution. It is in many respects a rather unusual parasite. We shall argue that B-chromosomes represent highly evolved parasitic DNA, transmitted through the germ line and often eliciting greater rates of recombination in the host genome.


Recent studies suggest that parasites (interpreted broadly to include viruses, bacteria, protozoans and helminths) may influence the numerical magnitude or geographical distribution of their host populations; most of such studies focus on the population biology and epidemiology of the host-parasite association, taking no explicit account of the genetics. Other researchers have explored the possibility that the coevolution of hosts and parasites may be responsible for much of the genetic diversity found in natural populations, and may even be the main reason for sexual reproduction; such genetic studies rarely take accurate account of the density- and frequency-dependent effects associated with the transmission and maintenance of parasitic infections. This paper aims to combine epidemiology and genetics, reviewing the way in which earlier studies fit into a wider scheme and offering some new ideas about host-parasite coevolution. One central conclusion is that ‘successful’ parasites need not necessarily evolve to be harmless: both theory and some empirical evidence (particularly from the myxoma-rabbit system) indicate that many coevolutionary paths are possible, depending on the relation between virulence and transmissibility of the parasite or pathogen.


2019 ◽  
Author(s):  
A. M. Sparks ◽  
K. Watt ◽  
R. Sinclair ◽  
J. G. Pilkington ◽  
J. M. Pemberton ◽  
...  

AbstractHost-parasite interactions are powerful drivers of evolutionary and ecological dynamics in natural populations. Variation in immune responses to infection is likely to shape the outcome of these interactions, with important consequences for the fitness of both host and parasite. However, little is known about how genetic variation contributes to variation in immune responses under natural conditions. Here, we examine the genetic architecture of variation in immune traits in the Soay sheep of St Kilda, an unmanaged population of sheep infected with strongyle gastrointestinal nematodes. We assayed IgA, IgE and IgG antibodies against the prevalent nematodeTeladorsagia circumcinctain the blood plasma of > 3,000 sheep collected over 26 years. Antibody levels were significantly heritable, ranging from 0.21 to 0.39 in lambs and from 0.23 to 0.57 in adults. IgA levels were strongly associated with a region on chromosome 24 explaining 21.1% and 24.5% of heritable variation in lambs and adults, respectively; this region was adjacent to two candidate loci, the Class II Major Histocompatibility Complex Transactivator (CIITA) and C-Type Lectin Domain Containing 16A (CLEC16A). Lamb IgA levels were also associated with the immunoglobulin heavy constant loci (IGH) complex on chromosome 18. Adult IgE levels and lamb IgG levels were associated with the major histocompatibility complex (MHC) on chromosome 20. This study provides evidence of high heritability of a complex immunological trait under natural conditions and provides the first evidence from a genome-wide study that large effect genes located outside the MHC region exist for immune traits in the wild.Author summaryHost-parasite interactions are powerful drivers of evolutionary and ecological dynamics in natural populations. Variation in immune responses to infection shapes the outcome of these interactions, with important consequences for the ability of the host and parasite to survive and reproduce. However, little is known about how much genes contribute to variation in immune responses under natural conditions. Our study investigates the genetic architecture of variation in three antibody types, IgA, IgE and IgG in a wild population of Soay sheep on the St Kilda archipelago in North-West Scotland. Using data collected over 26 years, we show that antibody levels have a heritable basis in lambs and adults and are stable over lifetime of individuals. We also identify several genomic regions with large effects on immune responses. Our study offers the first insights into the genetic control of immunity in a wild population, which is essential to understand how immune profiles vary in challenging natural conditions and how natural selection maintains genetic variation in complex immune traits.


2018 ◽  
Author(s):  
Elizabeth ML Duxbury ◽  
Jonathan P Day ◽  
Davide Maria Vespasiani ◽  
Yannik Thüringer ◽  
Ignacio Tolosana ◽  
...  

AbstractIt is common to find considerable genetic variation in susceptibility to infection in natural populations. We have investigated whether natural selection increases this variation by testing whether host populations show more genetic variation in susceptibility to pathogens that they naturally encounter than novel pathogens. In a large cross-infection experiment involving four species of Drosophila and four host-specific viruses, we always found greater genetic variation in susceptibility to viruses that had coevolved with their host. We went on to examine the genetic architecture of resistance in one host species, finding that there are more major-effect genetic variants in coevolved host-parasite interactions. We conclude that selection by pathogens increases genetic variation in host susceptibility, and much of this effect is caused by the occurrence of major-effect resistance polymorphisms within populations.


Heredity ◽  
2020 ◽  
Vol 125 (4) ◽  
pp. 173-183
Author(s):  
Gilberto Bento ◽  
Peter D. Fields ◽  
David Duneau ◽  
Dieter Ebert

Abstract To understand the mechanisms of antagonistic coevolution, it is crucial to identify the genetics of parasite resistance. In the Daphnia magna–Pasteuria ramosa host–parasite system, the most important step of the infection process is the one in which P. ramosa spores attach to the host’s foregut. A matching-allele model (MAM) describes the host–parasite genetic interactions underlying attachment success. Here we describe a new P. ramosa genotype, P15, which, unlike previously studied genotypes, attaches to the host’s hindgut, not to its foregut. Host resistance to P15 attachment shows great diversity across natural populations. In contrast to P. ramosa genotypes that use foregut attachment, P15 shows some quantitative variation in attachment success and does not always lead to successful infections, suggesting that hindgut attachment represents a less-efficient infection mechanism than foregut attachment. Using a Quantitative Trait Locus (QTL) approach, we detect two significant QTLs in the host genome: one that co-localizes with the previously described D. magna PR locus of resistance to foregut attachment, and a second, major QTL located in an unlinked genomic region. We find no evidence of epistasis. Fine mapping reveals a genomic region, the D locus, of ~13 kb. The discovery of a second P. ramosa attachment site and of a novel host-resistance locus increases the complexity of this system, with implications for both for the coevolutionary dynamics (e.g., Red Queen and the role of recombination), and for the evolution and epidemiology of the infection process.


1989 ◽  
Vol 67 (9) ◽  
pp. 2238-2243 ◽  
Author(s):  
Bruce P. Smith

Laboratory-reared first-instar juvenile Gerris comatus Drake &Hottes, Gerris alacris Hussey, and Gerris buenoi Kirkaldy were exposed to larval Limnochares aquatica (L.). Development and mortality of parasitized juvenile water striders were monitored and compared with those of unparasitized insects. Duration of infestation was from 6 to 13 days during which surviving hosts moulted several times, with engorging larvae transferring to the teneral host during the moulting process. Most mites dropped off the host during the host's second instar, and all mites were off the host by the host's fourth instar. Parasitism by larval mites significantly increased mortality, duration of instars, and variance in age at first moult for parasitized water striders. Mortality and duration of first instars were directly correlated with number of mites per host. Parasite-induced mortality was not evident until 2 days after attachment of mites, and almost all mortality occurred within the host's first instar. Gerris comatus and G. alacris apparently did not differ in response to parasitism; however, G. buenoi showed greater mortality than the other gerrid species when carrying comparable numbers of mites. The effects of parasitism on juvenile water striders within natural populations are predicted to be severe, and would reduce recruitment while also increasing variation in age structure.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2429
Author(s):  
Luisa Giari ◽  
Elisa Anna Fano ◽  
Giuseppe Castaldelli ◽  
Daniel Grabner ◽  
Bernd Sures

Amphipods are a key component of aquatic ecosystems due to their distribution, abundance and ecological role. They also serve as hosts for many micro- and macro-parasites. The importance of parasites and the necessity to include them in ecological studies has been increasingly recognized in the last two decades by ecologists and conservation biologists. Parasites are able to alter survival, growth, feeding, mobility, mating, fecundity and stressors’ response of their amphipod hosts. In addition to their modulating effects on host population size and dynamics, parasites affect community structure and food webs in different ways: by increasing the susceptibility of amphipods to predation, by quantitatively and qualitatively changing the host diet, and by modifying competitive interactions. Human-induced stressors such as climate change, pollution and species introduction that affect host–parasite equilibrium, may enhance or reduce the infection effects on hosts and ecosystems. The present review illustrates the importance of parasites for ecosystem processes using examples from aquatic environments and amphipods as a host group. As seen from the literature, amphipod–parasite systems are likely a key component of ecological processes, but more quantitative data from natural populations and field evidence are necessary to support the results obtained by experimental research.


Sign in / Sign up

Export Citation Format

Share Document