Retronasal Smell

Neuroenology ◽  
2016 ◽  
pp. 128-134
Author(s):  
Gordon M. Shepherd

We compare the initial experience of the aroma of the wine in the glass with the experience of the retronasal aroma as it contributes to the full flavor of the wine in the mouth and throat. We discuss the controversy over whether retronasal smell is less sensitive than orthonasal smell, and what could be the reasons. The processing of retronasal smell images is described from the olfactory receptors to the olfactory bulb, olfactory cortex, and highest cortical levels.

2014 ◽  
Author(s):  
Takushi Kishida ◽  
J. G. M. Thewissen ◽  
Sharon Usip ◽  
John C George ◽  
Robert S Suydam

Although modern baleen whales still possess a functional olfactory systems that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced profoundly. This is probably in response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain, and that a modern baleen whale possess only 60 olfactory receptor genes. Here we show that olfactory bulb of bowhead whales (Balaena mysticetus, Mysticeti) lacks glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli in the bowhead whale olfactory bulb. Olfactory sensory neurons that express the same olfactory receptor in mice generally project to two specific glomeruli in an olfactory bulb, meaning that ratio of the number of olfactory receptors : the number of glomeruli is approximately 1:2. However, we show here that this ratio is not applicable to whales, indicating the limitation of mice as model organisms for understanding the initial coding of odor information among mammals.


2014 ◽  
pp. 133-160 ◽  
Author(s):  
Shin Nagayama ◽  
Kei M. Igarashi ◽  
Hiroyuki Manabe ◽  
Kensaku Mori

2021 ◽  
pp. 851-861
Author(s):  
Kelly D. Flemming

This chapter briefly repeats key anatomic characteristics and then reviews clinical disorders affecting each cranial nerve in addition to the brainstem. More specifically, this chapter covers cranial nerves I, V, VII, and IX through XII plus the brainstem. The olfactory nerve is a special visceral afferent nerve that functions in the sense of smell. The axons of the olfactory receptor cells within the nasal cavity extend through the cribriform plate to the olfactory bulb. These olfactory receptor cell axons synapse with mitral cells in the olfactory bulb. Mitral cell axons project to the primary olfactory cortex and amygdala. The olfactory cortex interconnects with various autonomic and visceral centers.


1956 ◽  
Vol 186 (2) ◽  
pp. 255-257 ◽  
Author(s):  
Raymond R. Walsh

Studies of single-cell spike discharges in the olfactory bulb of the rabbit indicate the presence of three classes of neurons as characterized by their discharge patterns. Cells of class I discharge continuously and spontaneously; class II cells discharge intermittently in bursts, in synchrony with the passage of air through the nose. Cells of classes I and II are unmodified during olfactory stimulation. It appears there are many cells in the olfactory bulb whose discharge patterns are unrelated to excitation of the olfactory receptors by odors. Cells of class III respond to appropriate odors; the response of such cells to some odors and not others indicates that odor specificity is a fundamental characteristic of the olfactory system.


2020 ◽  
Vol 83 (1) ◽  
Author(s):  
Kensaku Mori ◽  
Hitoshi Sakano

In mammals, odor information detected by olfactory sensory neurons is converted to a topographic map of activated glomeruli in the olfactory bulb. Mitral cells and tufted cells transmit signals sequentially to the olfactory cortex for behavioral outputs. To elicit innate behavioral responses, odor signals are directly transmitted by distinct subsets of mitral cells from particular functional domains in the olfactory bulb to specific amygdala nuclei. As for the learned decisions, input signals are conveyed by tufted cells as well as by mitral cells to the olfactory cortex. Behavioral scene cells link the odor information to the valence cells in the amygdala to elicit memory-based behavioral responses. Olfactory decision and perception take place in relation to the respiratory cycle. How is the sensory quality imposed on the olfactory inputs for behavioral outputs? How are the two types of odor signals, innate and learned, processed during respiration? Here, we review recent progress on the study of neural circuits involved in decision making in the mouse olfactory system. Expected final online publication date for the Annual Review of Physiology, Volume 83 is February 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2017 ◽  
Vol 12 (5) ◽  
pp. 1355-1362 ◽  
Author(s):  
Linyin Yao ◽  
Xiaoli Yi ◽  
Jayant Marian Pinto ◽  
Xiandao Yuan ◽  
Yichen Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document