12. BIG PLANETS, DWARF PLANETS, AND SMALL BODIES

2013 ◽  
Keyword(s):  
2017 ◽  
pp. 311-343
Author(s):  
Nico Schmedemann ◽  
Matteo Massironi ◽  
Roland Wagner ◽  
Katrin Stephan
Keyword(s):  

2015 ◽  
Vol 11 (A29A) ◽  
pp. 227-227
Author(s):  
Dominique Bockelée-Morvan

The XXIX IAU General Assembly took place during the golden year of the exploration of small solar system bodies. With the Rosetta ESA mission around comet 67P, NASA Dawn and New Horizons missions nearby dwarf planets Ceres and Pluto, respectively, and the NASA/Cassini mission in Saturn neighborhood, year 2015 marked an important step towards further understanding of small solar system bodies. On August 11-13, Focus meeting 9 "Highlights in the exploration of small worlds" gathered scientists of all over the world to present and discuss the spectacular results obtained from these missions, as well as recent achievements obtained from past missions, comprehensive spectroscopic surveys from space (e.g., Herschel, NEOWISE, Gaia), ground-based observations, and geochemical analyses. This meeting was also the opportunity to discuss the state of our understanding of the nature of the various populations of small bodies in the Solar System, including icy satellites, in a cosmo-chemistry perspective.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Walaa Elmasry ◽  
Yoko Kebukawa ◽  
Kensei Kobayashi

The extraterrestrial delivery of organics to primitive Earth has been supported by many laboratory and space experiments. Minerals played an important role in the evolution of meteoritic organic matter. In this study, we simulated aqueous alteration in small bodies by using a solution mixture of H2CO and NH3 in the presence of water at 150 °C under different heating durations, which produced amino acids after acid hydrolysis. Moreover, minerals were added to the previous mixture to examine their catalyzing/inhibiting impact on amino acid formation. Without minerals, glycine was the dominant amino acid obtained at 1 d of the heating experiment, while alanine and β-alanine increased significantly and became dominant after 3 to 7 d. Minerals enhanced the yield of amino acids at short heating duration (1 d); however, they induced their decomposition at longer heating duration (7 d). Additionally, montmorillonite enhanced amino acid production at 1 d, while olivine and serpentine enhanced production at 3 d. Molecular weight distribution in the whole of the products obtained by gel chromatography showed that minerals enhanced both decomposition and combination of molecules. Our results indicate that minerals affected the formation of amino acids in aqueous environments in small Solar System bodies and that the amino acids could have different response behaviors according to different minerals.


2018 ◽  
Vol 14 (S345) ◽  
pp. 351-352
Author(s):  
Ernst A. Dorfi ◽  
Florian Ragossnig

AbstractDuring the early stages of planet formation accretion of small bodies add mass to the planet and deposit their energy kinetic energy. Caused by frictional heating and/or large stagnation pressures within the dense and extended atmospheres most of the in-falling bodies get destroyed by melting or break-up before they impact on the planet’s surface. The energy is added to the atmospheric layers rather than heating the planet directly. These processes can significantly alter the physical properties of protoplanets before they are exposed with their primordial atmospheres to the early stellar source when the protoplanetary disk becomes evaporated.


2012 ◽  
Vol 349 (2) ◽  
pp. 493-509 ◽  
Author(s):  
Zhang Zexu ◽  
Wang Weidong ◽  
Li Litao ◽  
Huang Xiangyu ◽  
Cui Hutao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document