scholarly journals Stepwise Volume Decomposition Considering Design Feature Recognition

2013 ◽  
Vol 18 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Byung Chul Kim ◽  
Ikjune Kim ◽  
Soonhung Han ◽  
Duhwan Mun
Author(s):  
James K. Coles ◽  
Richard H. Crawford ◽  
Kristin L. Wood

Abstract A new feature recognition method is presented that generates volumetric feature representations from conventional boundary representations of mechanical parts. Recognition is accomplished by decomposing the known total feature volume of a part into a set of smaller volumes through analytic face extension. The decomposed volumes are combined to generate an initial set of features. Alternative sets of features are generated by maintaining and evaluating information on intersections of the initial feature set. The capabilities of the method are demonstrated through both a hypothetical and a real world design example. The method’s ability to locate features despite interactions with other features, and its ability to generate alternative sets of features, distinguishes it from existing recognition techniques.


Author(s):  
Parag Dave ◽  
Hiroshi Sakurai

Abstract A method has been developed that decomposes an object having both planar and curved faces into volumes, called maximal volumes, using the halfspaces of the object. A maximal volume has as few concave edges as possible without introducing additional halfspaces. The object is first decomposed into minimal cells by extending the faces of the object. These minimal cells are then composed to form maximal volumes. The combinations of such minimal cells that result in maximal volumes are searched efficiently by examining the relationships among those minimal cells. With this decomposition method, a delta volume, which is the volume difference between the raw material and the finished part, is decomposed into maximal volumes. By subtracting maximal volumes from each other in different orders and applying graph matching to the resulting volumes, multiple interpretations of features can be generated.


Author(s):  
Reinholt Geelink ◽  
Otto W. Salomons ◽  
Fjodor van Slooten ◽  
Fred J. A. M. van Houten ◽  
Huub J. J. Kals

Abstract In this paper, interactive “constraint based feature definition” is used to drive both feature based design and feature recognition. At present, hardly any feature based CAD or CAPP system does offer adequate facilities to easily define application specific features. Feature definition by means of programming is an error prone and difficult task. The definition of new features has to be performed by domain experts in the fields of design and manufacturing. In general they will not be programming experts. This paper elaborates on interactive feature definition, aiming at facilitating the definition of features by non-programming experts. The interactive feature definition functionality is implemented in a re-design support system called FROOM. It supports feature based design. Feature definition is also used in a Computer Aided Process Planning system, called PART, for the definition of features to be recognized. Conceptual graphs are used as an aid in the definition of features and for the representation of the features. The conceptual graphs are automatically transformed into feature recognition algorithms. Degrees of freedom (DOF) analysis is used for support during feature definition and for solving geometric constraints related to the feature to be defined.


Author(s):  
Sha Wan ◽  
Yunbao Huang ◽  
Qifu Wang ◽  
Liping Chen ◽  
Yuhang Sun

Current design feature recognition mainly depends on the connective attributes of edges or faces in the CAD models, such as convexity, concavity, and tangency. However, it is difficult to uniquely define the mixed connective attributes of the generic features in some cases. A novel generic design feature recognition approach by detecting the hint of topology variation is presented in this study. The core idea includes: 1) the resulting CAD model of a complex part is regarded as formed from an initial basic shape such as roughcast and has been operated by introducing generic design features, which subsequently may cause topology variation; 2) Such topology variations, e.g. vertex elimination, edge partition and face alteration, are utilized to obtain generalized properties of the generic design features, dispensing with the connective attributes. Finally, 1) we demonstrate in the experiments that the approach successfully recognizes the main types of generic design features, both isolate and hybrid features. 2) Furthermore, we exhibit the application of the approach in some engineering examples.


2012 ◽  
Vol 197 ◽  
pp. 750-754
Author(s):  
Yao Chen ◽  
Guo Yuan Zhang ◽  
Jun Chao Wei ◽  
Xiu Tian Yan ◽  
Miao He

Traditional engineering design and realization typically follows a sequential pattern as described by many research publications such as French, Pahl and Beitz. These design methodologies face challenges when time is essence in product realization lifecycle. In contrast, as the design process of a product evolves,this new method incrementally creates machining feature model and realizes concurrent design feature and machining feature modeling based on an algorithm developed for local feature recognition. In addition, the method accelerated the determination of the area that require to be recognized by utilizing a dynamic link list to record the changing information of topological elements, the design features of the model generated by the feature-based design, processing and feature recognition is generated through feature model.


Author(s):  
Jami J. Shah ◽  
Yong Yan

Abstract This paper describes the development of a dimension model for use in both design and process planning. The model also facilitates the converting of dimensions and tolerances (D&T) from design models to machining features extracted automatically by feature recognition systems. The model is based on relative degrees of freedom of geometric entities, such as edges and faces of a part. Dimension graphs are created based on the degrees of freedom. The model allows dimension specification, dimension scheme modification, and dimension scheme validation. A methodology to automatically determine the dimensions of machining volumes obtained by volume decomposition is also described.


2015 ◽  
Vol 809-810 ◽  
pp. 847-852
Author(s):  
Cezary Grabowik ◽  
Rafał Zbiciak

Problems of design similarity identification and elements grouping play a key factor in the development of design standardization and the group technology methods. Design similarity identification methods are most often based on a comparison of codes ascribed to products design. Basically the code makes a quantitative product description including different product features. Whereas a qualitative description has constituted rather supplement of a quantitative description. The most important issue in a process of design similarity identification is a method of a product design description. This description is usually made with use of special codes composed of alphanumeric characters. The coding process allows reducing the number of data which are being processed during design similarity evaluation, but on the other hand in some cases it could cause information loss. Taking into account above there is still a need of working out of a new method of a product design description which will be able to reduce these negative features of coding techniques. In the paper a novel approach for a product design description is presented. It is proposed to apply a hybrid method for a design representation purpose. This method uses a combination of code chains for a product longitudinal cross-section representation and a spatial matrix for transvers sections. As a result of the conducted research a new method of a product design description was worked out. This method is especially suggested for application in automatic design feature recognition systems (AFR systems) in which a design feature database (DFD) is present.


Sign in / Sign up

Export Citation Format

Share Document