Effect of PLGA Scaffold Containing Demineralized Bone Solution for Articular Cartilage Tissue Engineering: In Vitro Test

Polymer Korea ◽  
2011 ◽  
Vol 35 (6) ◽  
pp. 499-504
Author(s):  
Woo Young Ahn ◽  
Hye Lin Kim ◽  
Jeong Eun Song ◽  
Dong Won Lee ◽  
Gil Son Khang
2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Rosyafirah Hashim ◽  
Munirah Sha’ban ◽  
Sarah Rahmat ◽  
Zainul Ibrahim Zainuddin

Introduction: In Islamic practice, the use of Qur’anic recitation in treatment can be traced back to the times of Prophet Muhammad (PBUH). This preliminary study aims to identify the potential of Qur’anic recitation of Surah Al-Fatihah on the proliferation of chondrocytes derived from rabbit articular cartilage. Cartilage tissue engineering offers an alternative way to facilitate cartilage regeneration in-vitro. Materials and Methods: The cellular model was established using a serially cultured and expanded chondrocytes in-vitro. The model was assigned into three groups. The first group was exposed to the Surah Al-Fatihah, recited 17 times based on the five times daily prayer unit (Raka’ah) obligated upon Muslims. The second group was exposed to an Arabic poem recitation. The third group was not exposed to any sound and served as the control. All groups were subjected to the growth profile analysis. The analysis was conducted at different passages starting from passage 0 to passage 3. Results: The results showed that the cells proliferation based on the growth kinetic analysis is higher for the cells exposed with Qur’anic recitation as compared to the Arabic poem and control groups. Conclusions: The proliferation process of the rabbit articular cartilage might be influenced with the use of Qur’anic recitation and as well as Arabic poem recitation. Exposure to the Western poem recitation and mute sound will be added for future study. It is hoped that this study could shed some light on the potential use of the Qur’anic recitation to facilitate cartilage regeneration in tissue engineering studies.


Biomaterials ◽  
2011 ◽  
Vol 32 (25) ◽  
pp. 5773-5781 ◽  
Author(s):  
Nandana Bhardwaj ◽  
Quynhhoa T. Nguyen ◽  
Albert C. Chen ◽  
David L. Kaplan ◽  
Robert L. Sah ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Stefano Focaroli ◽  
Gabriella Teti ◽  
Viviana Salvatore ◽  
Isabella Orienti ◽  
Mirella Falconi

Articular cartilage is a highly organized tissue with complex biomechanical properties. However, injuries to the cartilage usually lead to numerous health concerns and often culminate in disabling symptoms, due to the poor intrinsic capacity of this tissue for self-healing. Although various approaches are proposed for the regeneration of cartilage, its repair still represents an enormous challenge for orthopedic surgeons. The field of tissue engineering currently offers some of the most promising strategies for cartilage restoration, in which assorted biomaterials and cell-based therapies are combined to develop new therapeutic regimens for tissue replacement. The current study describes thein vitrobehavior of human adipose-derived mesenchymal stem cells (hADSCs) encapsulated within calcium/cobalt (Ca/Co) alginate beads. These novel chondrogenesis-promoting scaffolds take advantage of the synergy between the alginate matrix and Co+2ions, without employing costly growth factors (e.g., transforming growth factor betas (TGF-βs) or bone morphogenetic proteins (BMPs)) to direct hADSC differentiation into cartilage-producing chondrocytes.


2009 ◽  
Vol 21 (03) ◽  
pp. 149-155 ◽  
Author(s):  
Hsu-Wei Fang

Cartilage injuries may be caused by trauma, biomechanical imbalance, or degenerative changes of joint. Unfortunately, cartilage has limited capability to spontaneous repair once damaged and may lead to progressive damage and degeneration. Cartilage tissue-engineering techniques have emerged as the potential clinical strategies. An ideal tissue-engineering approach to cartilage repair should offer good integration into both the host cartilage and the subchondral bone. Cells, scaffolds, and growth factors make up the tissue engineering triad. One of the major challenges for cartilage tissue engineering is cell source and cell numbers. Due to the limitations of proliferation for mature chondrocytes, current studies have alternated to use stem cells as a potential source. In the recent years, a lot of novel biomaterials has been continuously developed and investigated in various in vitro and in vivo studies for cartilage tissue engineering. Moreover, stimulatory factors such as bioactive molecules have been explored to induce or enhance cartilage formation. Growth factors and other additives could be added into culture media in vitro, transferred into cells, or incorporated into scaffolds for in vivo delivery to promote cellular differentiation and tissue regeneration.Based on the current development of cartilage tissue engineering, there exist challenges to overcome. How to manipulate the interactions between cells, scaffold, and signals to achieve the moderation of implanted composite differentiate into moderate stem cells to differentiate into hyaline cartilage to perform the optimum physiological and biomechanical functions without negative side effects remains the target to pursue.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Er-Yuan Chuang ◽  
Chih-Wei Chiang ◽  
Pei-Chun Wong ◽  
Chih-Hwa Chen

The treatment of articular cartilage damage is a major task in the medical science of orthopedics. Hydrogels possess the ability to form multifunctional cartilage grafts since they possess polymeric swellability upon immersion in an aqueous phase. Polymeric hydrogels are capable of physiological swelling and greasing, and they possess the mechanical behavior required for use as articular cartilage substitutes. The chondrogenic phenotype of these materials may be enhanced by embedding living cells. Artificial hydrogels fabricated from biologically derived and synthesized polymeric materials are also used as tissue-engineering scaffolds; with their controlled degradation profiles, the release of stimulatory growth factors can be achieved. In order to make use of these hydrogels, cartilage implants were formulated in the laboratory to demonstrate the bionic mechanical behaviors of physiological cartilage. This paper discusses developments concerning the use of polymeric hydrogels for substituting injured cartilage tissue and assisting tissue growth. These gels are designed with consideration of their polymeric classification, mechanical strength, manner of biodegradation, limitations of the payload, cellular interaction, amount of cells in the 3D hydrogel, sustained release for the model drug, and the different approaches for incorporation into adjacent organs. This article also summarizes the different advantages, disadvantages, and the future prospects of hydrogels.


Author(s):  
Ana Belén Bonhome-Espinosa ◽  
Fernando Campos ◽  
Daniel Durand-Herrera ◽  
José Darío Sánchez-López ◽  
Sébastien Schaub ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document